Geometrical optics

Textbook: Chapter 34

- Electromagnetic Oscillations & Alternating Current
- Maxwell's Equations & Magnetism of Matter
- Electromagnetic Waves
- Images
- Interference
- Diffraction

IMAGES

Textbook: Chapter 34

- PLANE MIRRORS
- SPHERICAL MIRRORS
- SPHERICAL REFRACTIVE SURFACES
- THIN LENSES
- OPTICAL INSTRUMENTS

Images: Thorlabs.com

IMAGES

In this chapter key points are formulas to find images, magnification, and particular rays

Spherical refractive surfaces (slides 20-24) and demonstration of the thin lenses formula (slides 31-35) are here for your personal knowledge but will not be asked during the test

Note on this chapter:

We will use **geometrical optics** to understand light propagation through **optical components** to form **images**

e.g. image of an object magnified by a lens, of a planet seen through a telescope, of a bacteria seen through a microscope ... or simply the formation of an image on the retina

Beams of light are represented by an **infinite number of rays**There is **no interaction between rays** \rightarrow Rays can be studied independently

Wave propagation is thus simplified as geometrical problems through this approximation and **laws to construct images** are extracted

Objects are any **source** of rays (objects that emit or reflect rays)

Real image

source

Images can be real or virtual

Real images: Real images are formed at the intersection of real rays Real rays converge to the image

→ Can be formed on a screen

Virtual images: Virtual images are formed at the intersection of virtual rays Real rays diverge

> → Cannot be formed on a screen but can be seen through a component

Virtual image

Images (real or virtual) of a component can be **objects** (real or virtual) for **another component** in an optical system

Real rays: Continuous line + arrow for direction of propagation

Virtual rays: Dotted line → Extension of a real ray

In geometrical optics, we use **algebraic distances**→ distances that can be **positive or negative**

Distances from a **real object to a component** are **positive**Distances from a **virtual image to a component** are **negative**

Infinite distance → rays are parallel

LAW OF REFLECTION

Plane mirrors are plane **reflective** surfaces

glossy paint vs matte paint

LAW OF REFLECTION

Notes: Two convention coexist in physics

We'll choose this convention

Angles are oriented from the normal to the rays

→ Easier but you have to remember the direction of the rays

mirror

Angles are always oriented counter clockwise (trigonometric direction)

mirror

→ More accurate but it introduces in minus signe in the law of reflexion

PLANE MIRRORS

Plane mirrors are plane **reflective** surfaces

Law of reflection: $\theta = \theta'$

Virtual image behind the mirror

O: Point object → source of rays

I: Point image → intersection of rays

p: object distance > 0

i: image distance < 0

PLANE MIRRORS

Only 2 rays to construct the image of a point:

- 1 ray at normal incidence
- 1 ray oriented with an angle θ

Triangles ab0 & ab1 are congruent

$$\rightarrow$$
 Ob = Ib

In algebraic distances:

$$p = -i$$

Plane mirrors form virtual images at equal distance of the object

PLANE MIRRORS

Objects: Represented by arrows to show size and orientation

→ need 2 points

The image has the same size and the same orientation than the object

(congruence of *Ocd* & *deI*)

$$p = -i$$

Plane mirrors form virtual images at equal distance of the object

Spherical mirrors are curved reflective surfaces

Concave

or **Convex**

We define:

- The center of curvature C

 The mirror is a portion of a sphere of center C and radius r
- The central axis
- The center of the mirror c

Concave mirror: r > 0

Convex mirror: r < 0

Spherical mirrors are curved reflective surfaces

Concave

or **Convex**

We define:

- The **center of curvature C**The mirror is a portion of a sphere of center C and radius r
- The **central axis**
- The center of the mirror c

Concave mirror: r > 0 Convex mirror: r < 0

Rays **parallel to the central axis** (from an object at infinite distance) intersect at the **focal point F** of the spherical mirror

$$\rightarrow$$
 Fc = focal length f

Concave (or converging) mirror

Rays **parallel to the central axis** (from an object at infinite distance) intersect at the **focal point F** of the spherical mirror

$$\rightarrow$$
 Fc = focal length f

Concave (or converging) mirror

Rays **parallel to the central axis** (from an object at infinite distance) intersect at the **focal point F** of the spherical mirror

$$\rightarrow$$
 Fc = focal length f

Convex (or diverging) mirror

Rays **parallel to the central axis** (from an object at infinite distance) intersect at the **focal point F** of the spherical mirror

 \rightarrow Fc = focal length f

Convex (or diverging) mirror

Rays **parallel to the central axis** (from an object at infinite distance) intersect at the **focal point F** of the spherical mirror

 \rightarrow Fc = focal length f

 $f=\frac{r}{2}$

Concave mirror

$$\rightarrow f > 0$$
F real

Convex mirror

$$ightarrow f < 0$$
F virtual

Relation between object distance p and image distance i?

p = fambiguous image $i \ at \ \pm \infty$

p > fReal image reversed i > 0

Concave mirrors

Generalization for spherical mirrors

$$\frac{1}{p} + \frac{1}{i} = \frac{1}{f}$$

Will be demonstrated soon (optionnal)

It can be demonstrated that

$$m = -\frac{i}{p}$$

Magnification

h and h' respective size of the object and the image

$$|m|=rac{h'}{h}$$
 Lateral magnification

By convention:

m > 0 if not reversed

m < 0 if reversed

SPHERICAL MIRRORS - OPTIONNAL

Proof of the spherical mirror formula:

In OaC:
$$\alpha + \theta + (180^{\circ} - \beta) = 180^{\circ}$$

 $\alpha + \theta = \beta$

In OaI:
$$\alpha + 2\theta + (180^{\circ} - \gamma) = 180^{\circ}$$

 $\alpha + 2\theta = \gamma$

Thus,
$$\gamma = \alpha + 2(\beta - \alpha) = 2\beta - \alpha$$

 $\gamma + \alpha = 2\beta$

Writing the angles in radians:

$$\alpha \simeq \frac{\widehat{ac}}{Oc} = \frac{\widehat{ac}}{p}$$
 $\beta = \frac{\widehat{ac}}{Cc} = \frac{\widehat{ac}}{r}$ $\gamma \simeq \frac{\widehat{ac}}{Ic} = \frac{\widehat{ac}}{i}$

Note: \overrightarrow{ac} is an arc length, approximations valid for small angles α and γ

SPHERICAL MIRRORS - OPTIONNAL

Proof of the spherical mirror formula:

We have: $\gamma + \alpha = 2\beta$

$$\alpha \simeq \frac{\widehat{ac}}{Oc} = \frac{\widehat{ac}}{p}$$
 $\beta = \frac{\widehat{ac}}{Cc} = \frac{\widehat{ac}}{r}$ $\gamma \simeq \frac{\widehat{ac}}{Ic} = \frac{\widehat{ac}}{i}$

So:
$$\frac{ac}{i} + \frac{ac}{p} = 2\frac{ac}{r}$$

With
$$f = r/2$$

$$\frac{1}{i} + \frac{1}{p} = \frac{1}{f}$$
 \leftrightarrow

Geometrical consequence of this formula:

Existence of particular rays

Geometrical construction of images with particular rays

Incident rays parallel to the central axis reflect passing through F

Incident rays passing through F reflect parallel to the central axis

Incident rays passing through C reflect on the same path

Incident rays passing through c reflect symmetrically

→ Using (at least) the intersection of 2 of these rays to construct the image

Geometrical construction of images with particular rays

Incident rays parallel to the central axis reflect passing through F
Incident rays passing through F reflect parallel to the central axis
Incident rays passing through C reflect on the same path
Incident rays passing through c reflect symmetrically

Geometrical construction of images with particular rays

$$--- = \frac{h'}{h} = m$$
 Lateral magnification

Incident rays parallel to the central axis reflect passing through F
Incident rays passing through F reflect parallel to the central axis
Incident rays passing through C reflect on the same path
Incident rays passing through c reflect symmetrically

Geometrical construction of images with particular rays

Incident rays parallel to the central axis reflect passing through F
Incident rays passing through F reflect parallel to the central axis
Incident rays passing through C reflect on the same path
Incident rays passing through c reflect symmetrically

Demonstration of the lateral magnification

bac and edc are congruent

$$\frac{ab}{ac} = \frac{de}{dc}$$

With algebraic distances:

$$\frac{h}{p} = -\frac{h'}{i} \longrightarrow \frac{-i}{p} = \frac{h'}{h} = m$$

SPHERICAL REFRACTIVE SURFACES

Concave or convex spherical volumes of refractive index $\mathbf{n_2}$ External medium of index $\mathbf{n_1}$

Like spherical mirror, we define:

- Center of curvature C
- Center c
- Central axis
- Radius r

But unlike spherical mirrors

r < 0 for concave

r > 0 for convex

Incident rays are refracted at the interface

SPHERICAL REFRACTIVE SURFACES - OPTIONNAL

Images can be real or virtual

General formula for spherical refractive surfaces

$$\frac{n_1}{p} + \frac{n_2}{i} = \frac{n_2 - n_1}{r}$$

Will be demonstrated soon (optionnal)

But unlike spherical mirrors

r < 0 for concave

r > 0 for convex

SPHERICAL REFRACTIVE SURFACES - OPTIONNAL

Proof of the spherical refractive surface formula:

In *OaC*:
$$\alpha + \beta + (180^{\circ} - \theta_{1}) = 180^{\circ}$$

 $\alpha + \beta = \theta_{1}$

In *OaI*:
$$\alpha + \gamma + ((180^{\circ} - \theta_1) + \theta_2) = 180^{\circ}$$

 $\alpha + \gamma + \theta_2 = \theta_1$

Thus:
$$\alpha + \gamma + \theta_2 = \alpha + \beta$$

 $\gamma + \theta_2 = \beta$

S-D law of refraction: $n_1 sin(\theta_1) = n_2 sin(\theta_2)$

For small angles $sin(x) \simeq x$

So we can write: $n_1\theta_1 = n_2\theta_2$

Valid for ray close to the axis or for small curvatures (Paraxial approximation)

SPHERICAL REFRACTIVE SURFACES - OPTIONNAL

Proof of the spherical refractive surface formula:

We have:
$$\alpha + \beta = \theta_1$$
 $n_1\theta_1 = n_2\theta_2$ $\gamma + \theta_2 = \beta$

So:
$$\gamma + \frac{n_1}{n_2}\theta_1 = \beta$$

$$\gamma + \frac{n_1}{n_2}(\alpha + \beta) = \beta$$

$$\gamma + \frac{n_1}{n_2}\alpha = \left(1 - \frac{n_1}{n_2}\right)\beta$$

$$n_2\gamma + n_1\alpha = (n_2 - n_1)\beta$$

SPHERICAL REFRACTIVE SURFACES - OPTIONNAL

Proof of the spherical refractive surface formula:

We have: $n_2\gamma + n_1\alpha = (n_2 - n_1)\beta$

Writing the angles in radians:

$$\alpha \simeq \frac{\widehat{ac}}{Oc} = \frac{\widehat{ac}}{p}$$
 $\beta = \frac{\widehat{ac}}{Cc} = \frac{\widehat{ac}}{r}$ $\gamma \simeq \frac{\widehat{ac}}{Ic} = \frac{\widehat{ac}}{i}$

So:
$$n_2 \frac{ac}{i} + n_1 \frac{ac}{p} = (n_2 - n_1) \frac{ac}{r}$$

$$\frac{n_2}{i} + \frac{n_1}{p} = \frac{n_2 - n_1}{r}$$

Lens: Optical component made of **two refracting surfaces**

 \rightarrow We will study the case where surfaces = spheres of radius r_1 and r_2

Thin lens approximation:

Thickest part $<< r_1, r_2, p, i$

In the following, we assume that we are in the case of **Paraxial Approximation:**

Rays are **close** to the central axis and form **small angles** with the central axis

For the sake of clarity distances and angles are exaggerated in the figures

Within paraxial approximation, for thin lenses we have a **General formula**

$$\frac{1}{f}=\frac{1}{p}+\frac{1}{i}$$

(The same than for spherical mirrors)

Focal length f is defined by the lens maker's equation

$$\frac{1}{f} = \left(\frac{n_{lens}}{n_{medium}} - 1\right) \left(\frac{1}{r_1} - \frac{1}{r_2}\right)$$

 r_1 , r_2 : radius of curvature of the surfaces

n_{lens}, n_{medium}: refractive index of the lens and the surrounding medium

Sign convention on r for refractive surfaces

2 refractions

Lenses focus light

→ Rays bend at the interfaces

Rays parallel to the central axis converge \rightarrow Converging lens f > 0

Rays parallel to the central axis diverge \rightarrow **Diverging lens** f < 0

Rays converge at the **real focal point** F_2 at distance f of the center another real focal point F_1 is at -f

Note:

For diverging lenses the extension of the rays converge to F₂even if the real rays diverge

Images for thin lenses:

$$\frac{1}{f} = \frac{1}{p} + \frac{1}{i} \longrightarrow i = \frac{p.f}{p - f}$$

Converging lenses: $f > 0 \rightarrow i > \text{or} < 0$ Real or virtual images

Diverging lenses: $f < 0 \rightarrow i$ always < 0 Virtual images

Magnification: $m = -\frac{i}{p}$ (The same than for spherical mirrors)

Note: For lenses, real (resp. virtual) images are on the opposite (resp. same) side than the object

Images for thin lenses:

$$\frac{1}{f} = \frac{1}{p} + \frac{1}{i} \longrightarrow i = \frac{p.f}{p - f}$$

Important convention about the sign of p, i and f

f > 0 for convex lens

f < 0 for concave lens

p > 0 if object to the left of lens

p < 0 if object to the right of lens

i < 0 if image to the left of lens

i > 0 if image to the right of lens

Proof of the thin lenses formula:

We first assume than the lens is not thin \rightarrow 2 spherical surfaces

- Radii r' and r''
- Center of curvature C' and C''
- Center c' and c'' spaced by L

Rays from O' on the central axis undergo 2 refraction to form the image I"

We treat the 2 surfaces separately

Proof of the thin lenses formula:

First surface:

I' is the virtual image of O' Generalized formula for spherical refractive surfaces ($n_1 = 1$, $n_2 = n$)

$$\frac{1}{p'} + \frac{n}{i'} = \frac{n-1}{r'}$$

Note that the distances are algebraic here: i' < 0

We rewrite the formula explicitly:

$$\frac{1}{p'} - \frac{n}{j'} = \frac{n-1}{r'} \qquad \text{With } j' = -i'$$

Proof of the thin lenses formula:

Second surface:

I" is the image of I'

I' is a real object for the 2nd surface

Spaced by L+j' of c'

Generalized formula for spherical refractive surfaces $(n_1 = n, n_2 = 1)$

$$\frac{n}{L+j'} + \frac{1}{i''} = \frac{1-n}{r''}$$

 $\frac{n}{L+j'} + \frac{1}{i''} = \frac{1-n}{r''}$ We now assume that the lens is thin L << $\frac{n}{j'} + \frac{1}{i''} = \frac{1-n}{r''}$

$$\frac{n}{i'} + \frac{1}{i''} = \frac{1 - r}{r''}$$

Proof of the thin lenses formula:

$$\frac{1}{p'} - \frac{n}{i'} = \frac{n-1}{r'}$$

We have:
$$\frac{1}{p'} - \frac{n}{j'} = \frac{n-1}{r'}$$
 and $\frac{n}{j'} + \frac{1}{i''} = \frac{1-n}{r''}$

Thus,

$$\frac{1}{p'} - \left(\frac{1-n}{r''} - \frac{1}{i''}\right) = \frac{n-1}{r'}$$

$$\frac{1}{p'} + \frac{n-1}{r''} + \frac{1}{i''} = \frac{n-1}{r'}$$

$$\frac{1}{p'} + \frac{1}{i''} = (n-1)\left(\frac{1}{r'} - \frac{1}{r''}\right)$$

For the final steps, we will rename p' as p (position of the object) and I" as I (position of the image) to use the previous notations, the last expression is rewritten:

$$\frac{1}{p} + \frac{1}{i} = (n-1)\left(\frac{1}{r'} - \frac{1}{r''}\right)$$

Proof of the thin lenses formula:

We have:
$$\frac{1}{p} + \frac{1}{i} = (n-1)\left(\frac{1}{r'} - \frac{1}{r''}\right)$$

Lens maker's formula:
$$\frac{1}{f} = \left(\frac{n_{lens}}{n_{medium}} - 1\right) \left(\frac{1}{r_1} - \frac{1}{r_2}\right)$$

Here
$$n_{lens} = n$$
, $n_{medium} = 1$, $r_1 = r'$ and $r_2 = r''$ so $\frac{1}{f} = (n-1)\left(\frac{1}{r'} - \frac{1}{r''}\right)$

Finally:
$$\frac{1}{p} + \frac{1}{i} = \frac{1}{f}$$

Geometrical construction of images with particular rays

Incident rays parallel to the central axis will pass through F₂

Incident rays passing through F₁ will be parallel to the central axis

Incident rays passing through the center are not deviated

→ Using (at least) the intersection of 2 of these rays to construct the image

Geometrical construction of images with particular rays

Incident rays parallel to the central axis will pass through F_2 Incident rays passing through F_1 will be parallel to the central axis Incident rays passing through the center are not deviated

Geometrical construction of images with particular rays

Incident rays parallel to the central axis will pass through F_2 Incident rays passing through F_1 will be parallel to the central axis Incident rays passing through the center are not deviated

https://phet.colorado.edu/sims/html/geometric-optics/latest/geometric-optics_all.html?

THIN LENSES - summary

Without instruments: using eyes

→ Form an image on the retina

Clear image are formed for

objects from **objects** from the

near point P_n at \sim 25 cm

Below this point the human lenses cannot contract enough to focus light on the retina

Without instruments: using eyes

→ Form an image on the retina Clear image are formed for objects from ∞ distance to the near point P_n at \sim 25 cm

Size of the image on the retina depends of the angle θ formed by the object in the field of view

Larger image on the retina

 \rightarrow increasing Θ bringing the object closer But the image is **not clear beyond** P_n

→ **Need instruments**

Magnifying glass

A **converging lens** with F₁ just before the object produces an **enlarged virtual image** I that is an object for the eye

- \rightarrow I located before P_n
- → Clear image on the retina

Angular magnification m_{θ}

$$\mathsf{m}_{\theta} = \frac{\theta'}{\theta}$$

Note: $m_{\theta} \neq m$ m is lateral magnification

→ Note: θ is defined for an object at P_n

Angular magnification m_{θ}

$$m_{\theta} = \frac{\theta'}{\theta}$$

Paraxial approximation: θ and $\theta' <<$ \rightarrow for $x << \sin(x) \simeq x$

$$sin(\theta) = h / 25cm$$

 $\sin(\theta') \simeq h/f$ (object close to F_1)

$$\frac{\theta'}{\theta} \simeq \frac{\sin(\theta')}{\sin(\theta)} = \frac{h}{f} \frac{25 cm}{h} = \frac{25 cm}{f}$$

Microscope

The compound microscope: has 2 converging lenses:

→ Objective & Eyepiece

The image of the object by the objective is an object for the eyepiece.

Eyepiece forms a virtual distant enlarged image of this object (image) for the eye

Tube length s can be adjusted

Next: calculation of the magnification

Distance between the object & the objective $\simeq f_{obj}$

Distance between the 1st image & the objective \simeq s

Distance between the 1st image & the eyepiece $\simeq f_{ev}$

Lateral magnification of the objective (m):

$$m = -s/f_{obj}$$

Angular magnification of the objective (m_{θ}) :

$$m_{\theta} = 25cm/f_{ey}$$

Magnification of the instrument (M):

$$M = m m_{\theta}$$

$$M = -\frac{s}{f_{obj}} \frac{25cm}{f_{ey}}$$

Size of the image on the retina depends of the **angle 0** formed by the object in the field of view

The refracting telescope has 2 converging lenses:

→ Objective & Eyepiece

The image of the object by the objective is an object for the eyepiece.

Eyepiece forms a image of this object (image) at infinite distance for the eye

Object are not close and small but at ∞ distance and large

Next: calculation of the magnification

Parallels but with higher angle

→ Larger image

Note: minus sign because the image is reversed

 $F_{2 \text{ obj}}$ and $F_{1 \text{ ey}}$ coincide Object seen without (resp. with) the instrument: $\theta_{obj}(\theta_{ey})$ Paraxial approximation: $\theta_{obj} = h/f_{obj}$ and $\theta_{ey} = h/f_{ey}$

Angular Magnification of the instrument (m_{θ}) :

$$m_{ heta} = rac{ heta_{ey}}{ heta_{obj}} = -rac{f_{ey}}{f_{obj}}$$

KEY POINTS

Images of plane mirrors p = -i

Images and lateral magnification of spherical mirrors $\frac{1}{p} + \frac{1}{i} = \frac{1}{f}$ $m = -\frac{i}{p}$ Particular rays of spherical mirrors

Images and lateral magnification of thin lenses $\frac{1}{p} + \frac{1}{i} = \frac{1}{f}$ $m = -\frac{i}{p}$ Particular rays of thin lenses

$$\frac{1}{p} + \frac{1}{i} = \frac{1}{f} \qquad m = -\frac{i}{p}$$

Angular magnification of a lens $m_{\theta} = \frac{25 cm}{f}$

Magnification of a compound microscope $M = m m_{\theta} = -\frac{s}{f_{obj}} \frac{25cm}{f_{ey}}$

Magnification of a refracting telescope $m_{\theta} = \frac{\theta_{ey}}{\theta_{obj}} = -\frac{f_{ey}}{f_{obj}}$

READING ASSIGNMENT

Chapter 35 of the textbook