ELECTROMAGNETIC WAVES
CHAPTER 33

Huygens - Light is a wave.

Einstein - Light is a particle.

Maxwell - Light is a
Electromagnetic wave.

*frustrated
students
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- Electromagnetic Oscillations & Alternating Current
- Maxwell’'s Equations & Magnetism of Matter

- Electromagnetic Waves

- Images

- Interference

- Diffraction




Videos links:
How Did We Figure Out What Light IS? (nistory of light)

Light Is Waves: Crash Course Physics #39

Spectra Interference: Crash Course Physics #40

The origin of Electromagnetic waves, and why they behave as they do

Understanding Electromagnetic Radiation!

But why would light "slow down"?



https://www.youtube.com/watch?v=ak7GB74Qlug&pp=ygUgZGlmZnJhY3Rpb24gbGlnaHQgc2NpZW5jZSBhc3lsdW0%3D
https://www.youtube.com/watch?v=IRBfpBPELmE
https://www.youtube.com/watch?v=-ob7foUzXaY
https://www.youtube.com/watch?v=V_jYXQFjCmA&t=613s
https://www.youtube.com/watch?v=FWCN_uI5ygY
https://youtu.be/KTzGBJPuJwM?si=-NEIVZ86qBrVvZX4

ELECTROMAGNETIC WAVES

Textbook: Chapter 33

- EM SPECTRUM AND TRAVELING EM WAVES

- ENERGY TRANSPORT AND POYNTING VECTOR
- RADIATION PRESSURE

- POLARIZATION

- REFLECTION AND REFRACTION

- TOTAL INTERNAL REFLECTION

Courtesy Bausch & Lomb

Note: EM: Electromagnetic




EM SPECTRUM AND TRAVELING EM WAVES

James Clark Maxwell

— Light = Traveling EM wave

EM wave:

Electric Field F
+

Magnetic Field B

Optics is Electromagnetism
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EM SPECTRUM AND TRAVELING EM WAVES

All EM waves travel in the free space Wavelength (nm)
(vacuum) at speed c 700 600 500 400 Visible light
A:~ 780 -390 nm
c = = 3.10%8 m/s
VEoHo :
Only a small portion

of the spectrum

THz domain: A: ~ 3 mm - 30 um Y{?lz»)'l_e ARG

A lot of research in this domain

<— Wavelength (m)
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Long waves Radio waves
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IMAGINE A SINGLE ELECTRIC CUMRGE BENG VIBRATED:

p IN THE SPACE NEAR THE
VIBRATING CHARGE, THE

%Q“gs:btkgﬁmc I';\')EC’EE ?

. (N= T N

{O)K 3 : MAGNETIC FIELD CURLING
AROUND 1T

S

BUT THE MAGNETIC FIELD

16 ALSD (HBNGING — %0

(T INDUZES MORE ELECTRIC

FIELD, WIHIZH INDULES \'
MORE MAAETC FIEWD...
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EM SPECTRUM AND TRAVELING EM WAVES

/Transformer

— oscillating electric charges

Eboooo
Transmission 5
line

LC oscillator

Current Dipole
oscillates at w oscillates at w

Electric field and Magnetic field
oscillate at w E—
Change over space # instantaneous
EM wave of angular freq.
traveling at speed c
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EM SPECTRUM AND TRAVELING EM WAVES

\
Traveling wave

/Transformer

g SOOOOTK \P\
— Far from the antenna so
the curvature of the wave can

. Distant
Transmission .
A point
line

LC oscillator Electric / /

be be neglected: Plane wave dipole.
Current Dipole
oscillates at w oscillates at w

Electric field and Magnetic field
oscillate at w E—
Change over space # instantaneous
EM wave of angular freq.
traveling at speed c
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EM SPECTRUM AND TRAVELING EM WAVES

Structure of the EM traveling plane wave

Eand B are perpendicular to the .
direction of propagation — transverse wave I

E is perpendicular to B

ExB gives the direction of propagation

Eand B vary sinusoidally at the same w in phase

P fixed point in space

10
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EM SPECTRUM AND TRAVELING EM WAVES

Structure of the EM traveling plane wave ‘

Eand B are perpendicular to the E
direction of propagation — transverse wave

I-U

i~
I-U

*.*"u

E is perpendicular to B time

=g
D:ﬂl

hﬂd—.«d—ﬁ%ﬂJ

o—i”

ExB gives the direction of propagation

I.

Eand B vary sinusoidally at the same w in phase ‘

P fixed point in space
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EM SPECTRUM AND TRAVELING EM WAVES

Structure of the EM traveling plane wave E
- g . . - r B P '
E and B vary sinusoidally at the same w in phase 7 7
: i . B B
Assuming forward propagation along the x axis q—if’ ﬂ-iP
| E_, B.: amplitudes of E and B e time *r
E = Epsin(kx —ot) | k. angular wave number 1] =  ; =
B = B sin(kx — wt w: angular frequency Pers Pert
m SIn( ) Cc = w / K speed of light in vacuum E_ED ED
Valid for linear or circular polarization L P = J
E, E _ : : E
— === Amplitude & magnitude ratios _ o
B, B P fixed point in space
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EM SPECTRUM AND TRAVELING EM WAVES

Representation of the wave:

Representations of the fields through space at a fixed instant

— Electric component

"]_'I

A
o
¥

| Magnetic component
| ( - e e

&3

Z
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EM SPECTRUM AND TRAVELING EM WAVES

Representation of the wave:

Wavefronts: Surfaces with E at constant phase separated by A
Rays: Line in the direction of propagation perpendicular to the wavefront

Wavefronts and rays are imaginary

ﬁ Wavefront
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EM SPECTRUM AND TRAVELING EM WAVES

Specificity of EM waves

- Unlike other waves (e.g. sound)
EM propagate without medium

- Special Relativity Theory:

The speed of light c is the same
no matter the motion of the The two fields continuously
source or the observer create each other via

induction

— Next: Exploring this statement
ELECTROMAGNETIC WAVES 15




EM SPECTRUM AND TRAVELING EM WAVES

Quantitative analysis

We consider a small rectangle ( surface = h dx) perpendicular to Oz

¥

ST

Z

ELECTROMAGNETIC WAVES 16




EM SPECTRUM AND TRAVELING EM WAVES

Quantitative analysis

During dt B has varied — ¢ in the rectangle varies — induced E field

On one edge electric field is E and E + dE on the other side

$E.dS= -2 (M -F) ) dx

04+ (F+dEY + 0 — FiW = —%(Bj/dx) T E L+ dl

7T | X
dE  dB 0E 0B E
dx  dt dx Ot 2 2

Note: 2 variables — partial derivative
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EM SPECTRUM AND TRAVELING EM WAVES

Quantitative analysis 8 E,, k cos(k t)
— = cos(kx — w
a m
OF OB E = E,, sin(kx — wt) / ¥
dx 0t B = B, sin(kx — wt) 0B
= —B,, w cos(kx — wt)

at

QD EmkW) = Bme

E, o
That demonstrates —_— ===
B, k
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EM SPECTRUM AND TRAVELING EM WAVES

Quantitative analysis

We consider a small rectangle ( surface = h dx) perpendicular to Oy

&1
\\ﬂ
NN

\

ELECTROMAGNETIC WAVES 19




EM SPECTRUM AND TRAVELING EM WAVES

Quantitative analysis

During dt E has varied — ¢; in the rectangle varies — induced B field

On one edge electric field is B and B + dB on the other side

fB dS = Ho€o—— t+ Holenc (M—A) L
Note: we assume free space propagation: i, . =0 iic .
/ /o dS

d
0 — (B + dB)K + 0 + Bl = ey (E Judx) A /A
h ﬁ‘,‘//
dB dE OB OF /B -
— 5 = Ho€o . — 5. = Hofo5, L
dx dt 0x Jat Z B+ d

Note: 2 variables — partial derivative
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Quantitative analysis

Ox = .UOEOE

0E

E = E,, sin(kx — wt)

B = B,, sin(kx — wt)

-’

E
But also —=
B

ELECTROMAGNETIC WAVES

m

EM SPECTRUM AND TRAVELING EM WAVES

— WB,, k coslka = wt) = #UugexE,, w costiler <_awt)

Ho€p

—FE,, w cos(kx — wt)

B,, k cos(kx — wt)

VHo€o




ENERGY TRANSPORT AND POYNTING VECTOR

ExB
Ho

S =

Since Eand B are perpendicular:

- S is along the direction of propagation

=@—1E2

Ho  CHo

ELECTROMAGNETIC WAVES

Characterized by the
Poynting vector S

Note: Poynting vector # spin
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ENERGY TRANSPORT AND POYNTING VECTOR

1

1
— - | —F2 —
I = Savg - ( E )avg— C_‘uO(Ez)avg

Clo

E = E,, sin(kx — wt)
E? = EZ sin?(kx — wt)

E? g = EZ (sin?(kx — wt))

Ezavg — E%l/z

2¢ph J

avg

ELECTROMAGNETIC WAVES

Characterized by the
Poynting vector S

Power transfer characterized by
the intensity I

Note: we usualy find the notation : (S) = (5)gpg
23




EM SPECTRUM AND TRAVELING EM WAVES

Variation of intensity with distance

We assume the EM comes from a point source of power P,
— spherical wavefronts close to the source

N /
_ power P

I = —
area A2 /

S

Intensity decreases with the squared /
distance from the source
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RADIATION PRESSURE

Light does not have mass but carries momentum
according to quantum mechanics p =

U. — Energy carry by the beam of light
c

N
speed of light

ELECTROMAGNETIC WAVES 25



RADIATION PRESSURE

Light does not have mass but carries momentum

according to quantum mechanics p = g‘/ Energy carry by the beam of light
EM waves carry energy

N
speed of light

(total absorption of light) Energy & momentum

AU

<
I
|

AU
Ap = 27 (total reflection of light)

Ap in direction of propagation of the incoming light

Beam of intensity S Area AU =

ELECTROMAGNETIC WAVES




RADIATION PRESSURE

AU

Ap = — F
2 C

AU IA

c C

(total absorption of light)

(total reflection of light)

Factor 2 between total absorption and total reflection

— More momentum is transferred during an elastic collision
rather than an inelastic collision

®

N
Y

]
ELECTROMAGNETIC WAVES

Note: if not total absorption or total reflection
The factor is between 1 and 2

27



RADIATION PRESSURE
- power  rateof doing

in case of light

= pressure =
area p Pr

Pr

I
— also called "radiation pressure”
C

Note: Be careful not to confuse the symbol p, for radiation
pressure with the symbol p for momentum.
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RADIATION PRESSURE

I
ho= (total absorption of light) EM waves carry energy
I
P. = 2; (total reflection of light) AL 8 U
iF1>> - (focused laser) P, >>
and A <<
Beam of intensity S Area AU = [AAt

A

Tl

Radiation Pressure

ELECTROMAGNETIC WAVES




POLARIZATION

~ Plane of Y

So far we represented the EM wave Y F oscillation
like this:
E is always in the (Oxy) plane ——x E
— Linear polarization along Oy ‘ 2

Vertical polarization J &
— (Oxy): plane of oscillation B L
Bult I'.ghtlis hot always linearly Schematic representation of
polarize an EM wave polarized along Oy
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POLARIZATION

Unpolarized light
(e.g. sun, lightbulb, ... )

E randomly oriented in a plane
perpendicular to the direction
of propagation

Separation of E in 2 components
— along Oz & Oy: E, and E,

Both oscillate as linearly
polarized electric fields

Schematic representation of
an unpolarized EM wave
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POLARIZATION

Note on polarization:
- It is possible to have a partially polarized light

Curcular (Rght Hand) Eliptical (Right Hand)
Polarzation Polarization
’ _ X
JT B
s
_k
6/ |
I
I
z
https://youtu.be/Q0qrU4nprB0O
- If poth components - If E, and_Ey have a +m/ - IfE and E have 3
are in phase 2 phase shift and the same Z h y hif
— back to linear amplitude £ 7/2 phase shift
; - - - - elliptic polarization
polarization — circular polarization

oriented with angle 6
with respect to Oy
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POLARIZATION

polarizing sheet

Polarizing direction
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POLARIZATION

Incident light ray

polarizing sheet

Unpolarized light

Polarizing sheet

Polarizing direction
Vertcally polarized light

Note: like always in physics, it’s more complicated than that. Polarizers

Emerging ||ght |S ||near|y polanzed don’t really act like filters by « absorbing » some light. We have to deal
.. . . with quantum mechanics for a full understanding
parallel to the polarizing direction

ELECTROMAGNETIC WAVES




POLARIZATION

Incident light ray

Intensity of the emerging light:

- For unpolarized light
Unpolarized light i

Polarizing sheet

Vertcally polarized light

I = 1,/2 (one-halfrule)
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POLARIZATION

Intensity of the emerging light:

— For linearly incident polarized light
\ E = 50y P B, = Ecos(8)u, + Esin(6)u,

EZ
N 2¢cpo

/ IO

— For Emerging light (sheet polarized along Oy)

E = E.u, = Ecos(8)uy
Note: 2 polarizers with yzy g
perpendicular polarizing ]

directions transmit no light N 2cu

cos?(60) | I = Iycos?(0)
(Malus law)
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REFLECTION AND REFRACTION

Geometrical optics

We only consider rays of light
and do not treat light as a wave (but
rays have a wavelength)
— approximation

Easier to treat propagation of light:
- Interfaces between mediums

- Design of optical instruments

©1974 FP/Fundamental Photographs
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REFLECTION AND REFRACTION

Wavefront

Normal Incident ray
|
Incident : Reflected
ray | ray _
| _\ normal to the interface
| 94’1
|
|

Reflected ray

Interftace J

Refracted ray

ELECTROMAGNETIC WAVES




REFLECTION AND REFRACTION

Normal Vocabulary
|
Reflected

ray\

Incident
ray

0, is the angle of incidence
0’, is the angle of reflection

|
|
| 6, is the angle of refraction

Wavefront

Interftace J

Angles between the rays and the normal

The normal and the incident ray define
the plane of incidence
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REFLECTION AND REFRACTION

Normal Incident ray
|
Incident : Reflected
ray | ray :
: \ normal to the interface
|

Wavefront

Interftace J

Note: In France we call them The
Laws of Snell - Descartes (S-D)

ELECTROMAGNETIC WAVES




REFLECTION AND REFRACTION

1st S-D law:
- Normal The reflected ray and the refracted ray
| - = .
H ncident  Reflected are in the plane of incidence
ray | ray
| \ 2" S-D law:
|

The angle of reflection is equal to the angle

Wavefront of incidence

Intelfacej Water ell = el

3rd S-D law:

The angle of refraction is given by
"2 o n,sin(8,) = n,sin(8,)

ny, Ny indexes of refraction of the mediums
ELECTROMAGNETIC WAVES 41




REFLECTION AND REFRACTION

speed of light in the vacum c

= speed of light in the medium v That implies: n = 1

) nair ~ 1
Typical values:— n_, =~ 1.33
n ~1.4-1.7

glass

Rewriting the 3™ S-D law

n
sin(0,) = n_: sin(64)

If n, > n; (resp. < ny)
the refracted ray is bend towards
(resp. away) from the normal
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REFLECTION AND REFRACTION
Note:

If n, = n, (index matching) the incident ray is not deviated

Normal

' If 6, = 0° (normal incidence)
— sin(8,) = 0

Thus, 8, =0
— The reflected beam is superposed
to the incident ray

And sin(6,) = 0,s008, =0

— The refracted ray is not deviated

ELECTROMAGNETIC WAVES




REFLECTION AND REFRACTION

Note that n is a function of the wavelength (e.q. Ny for fused quartz)

1.48

-
NS
I

Index of refraction
—
i
>

1.45
300 400

White

500 600 700 800

Beam of white light = superposition of
Monochromatic rays (each with a different A)
with the same 0,

— different 6,

— Chromatic dispersion

Prisms separate wavelengths with two refractions

The same phenomena occurs in raindrops to form

licht _
S ﬁ rainbows

ELECTROMAGNETIC WAVES




TOTAL INTERNAL REFLECTION

S-D law of refraction:
n,sin(6,) = n,sin(6,)

n
— 0, = asin (n—:sin(91)>

We assume n; > n,
(e.g. medium 1 is water, 2 is air)

cannot calculate 9,

— Above a certain value of 6,, we

(asin(x) with x > 1 is not defined)

Ken Kay/Fundamental Photographs

/2 A

In such cases, the refracted ray does
not exist — only reflection in medium 1

— Total Internal Reflection (TIR)
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TOTAL INTERNAL REFLECTION

For TIR, we define the critical angle 6_ such that 6, = 90°:
n,sin(8.) = n,sin(90) = n,

Normal

TIRiIfn, >n,and 6 > 6_

ELECTROMAGNETIC WAVES




POLARIZATION BY REFLECTION

Incident
unpolarized Reflected

Reflection Brewster angle 6,

perpendicular

polarized
perpendicularly

ELECTROMAGNETIC WAVES



POLARIZATION BY REFLECTION

Incident

unp:}larized | Reflected
| ray
|
|

A ray

ELECTROMAGNETIC WAVES

e

L

4

| \
7 Refracted
| \

We have: 65 + 6, = 90

Wlth nlsin(HB) = nzsin(ez) (3rd S-D)

So: nysin(fp)

Then: tan(0p)

n,sin(90 — Oz) = n,cos(Og)

np

nq

n
Op = arctan| —
n,

)
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One of my research interest was to retrieve the Snell laws and total Internal Reflexion, not with light but
with high speed electrons, called ballistic electrons that « behave like light » in electronics 2D based material

Les Rencontres de Moriond, March 2019 g GRAPHENE FLAGSHIP

Dirac Fermion Optics (DFO) — Diopter

A corner reflector for graphene Dirac
fermions as a phonon-scattering sensor

arXiv:1901.02225 (2019)
—

Ep = hvgkp
kg =
n=_Cgl,/e

David Mele

H. Graef', Q. Wilmart, M. Rosti 5
T. Taniguchi, K. Watanabe*, €. Bocquilon’, A 0 and B. Plagais’

ballistic

10 ms~t

transparent

3-108ms™1

G RWTHAACHEN " )
¥ T UNIVERSITY s

nysinf; = n,sind, Ep,Sin6; = Ep,sind,

J. Cayssol et al., PRB 79 (2009) 075428 2

Cheianov et al., PRB 74 (2006) 041403(R)

Gate coupling calibration:

Light in two different .
optical medium electron in two different BT

electrostatic medium



KEY POINTS

?L/ . Direction of

E / >~ propagation
Light as an EM wave W E
= S =€
Structure of the traveling plane EM wave T~F
. . . L . EXB EZ,
Poynting vector, intensity and radiation pressure § = I =
Ho 2¢cpy

Normal

. o . I
Polarized and unpolarized light Incident | Reflected

ray | ray
W
6, | 64
Snell-Descartes laws e i n.sin(0;) = n,sin(6,)

Interface —/ I Water
TIR and Polarization by reflection *
Refracted
L

ELECTROMAGNETIC WAVES 51




READING ASSIGNMENT

Chapter 34 of the textbook
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