ELECTROMAGNETIC WAVES CHAPTER 33



- Electromagnetic Oscillations & Alternating Current
- Maxwell's Equations & Magnetism of Matter
- Electromagnetic Waves
- Images
- Interference
- Diffraction

Videos links:

How Did We Figure Out What Light Is? (history of light)

Light Is Waves: Crash Course Physics #39

Spectra Interference: Crash Course Physics #40

The origin of Electromagnetic waves, and why they behave as they do

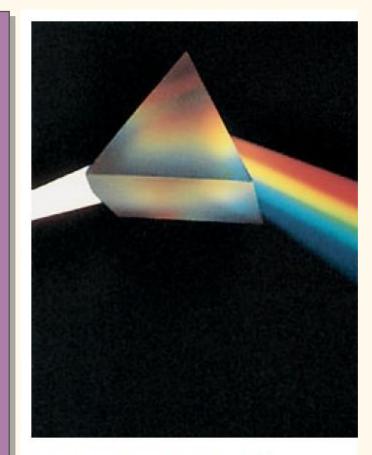
<u>Understanding Electromagnetic Radiation!</u>

But why would light "slow down"?

ELECTROMAGNETIC WAVES

Textbook: Chapter 33

- EM SPECTRUM AND TRAVELING EM WAVES
- ENERGY TRANSPORT AND POYNTING VECTOR
- RADIATION PRESSURE
- POLARIZATION
- REFLECTION AND REFRACTION
- TOTAL INTERNAL REFLECTION



Courtesy Bausch & Lomb

Note: EM: Electromagnetic

James Clark Maxwell

→ Light = Traveling EM wave

EM wave:

Electric Field \vec{E}

+

Magnetic Field \vec{B}

Optics is Electromagnetism

Examples of EM waves

- Visible light
- Infrared light
- UV light
- µ waves
- Radio waves

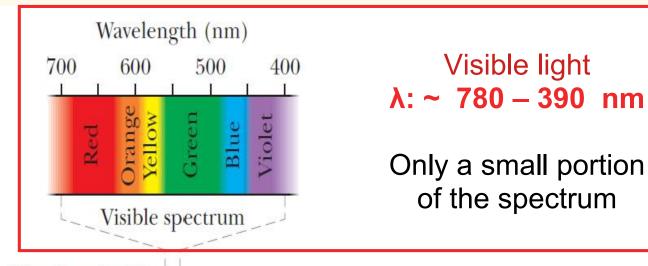
- ...

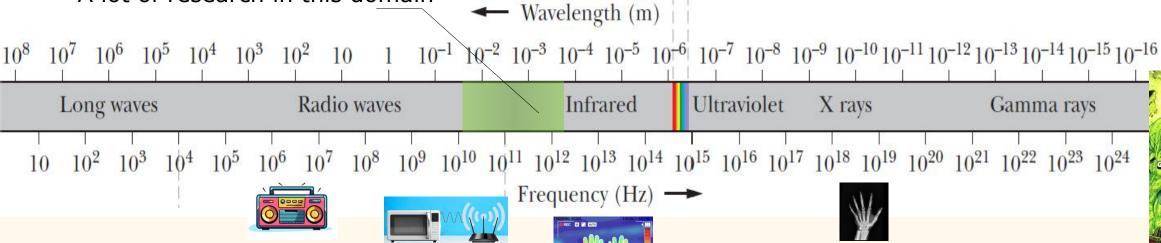
EM can be sorted into domains regarding their frequency

All EM waves travel in the **free space** (vacuum) at speed **c**

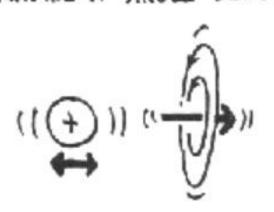
$$c = \frac{1}{\sqrt{\epsilon_0 \mu_0}} = 3.10^8 \text{ m/s}$$

THz domain: λ : \sim 3 mm – 30 μ m A lot of research in this domain



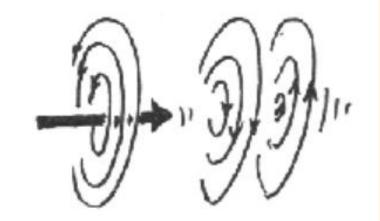


IMAGINE A SINGLE ELECTRIC CHARGE BEING VIBRATED:



IN THE SPACE NEAR THE VIBRATING CHARGE, THE CHARGE'S ELECTRIC FIELD IS CHANGING, SO IT INDUCES A MAGNETIC FIELD CURLING AROUND IT.

BUT THE MAGNETIC FIELD IS ALSO CHANGING —SO IT INDUCES MORE ELECTRIC FIELD, WHICH INDUCES MORE MAGNETIC FIELD...

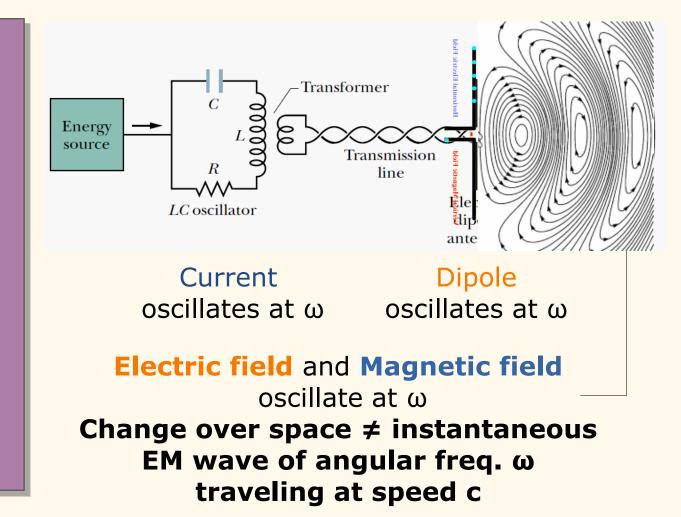


Generation of EM

→ oscillating electric charges

Example for $\lambda > 1m$: LC oscillator coupled to a dipole antenna

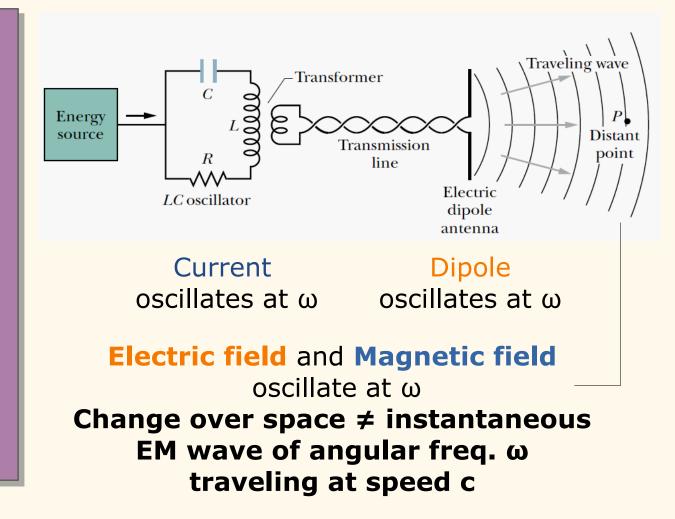
$$\omega = \frac{1}{\sqrt{LC}}$$



Structure of the EM wave

→ Far from the antenna so the *curvature of the wave* can be be neglected: Plane wave

Out of the plane wave approximation physical description of EM waves is more complex



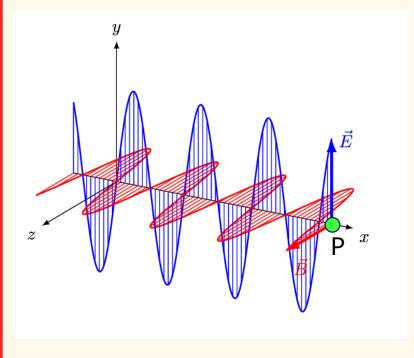
Structure of the EM traveling plane wave

 \overrightarrow{E} and \overrightarrow{B} are perpendicular to the direction of propagation \rightarrow transverse wave

 \vec{E} is **perpendicular** to \vec{B}

 $\vec{E} \times \vec{B}$ gives the direction of propagation

 \vec{E} and \vec{B} vary sinusoidally at the same ω in phase



P fixed point in space

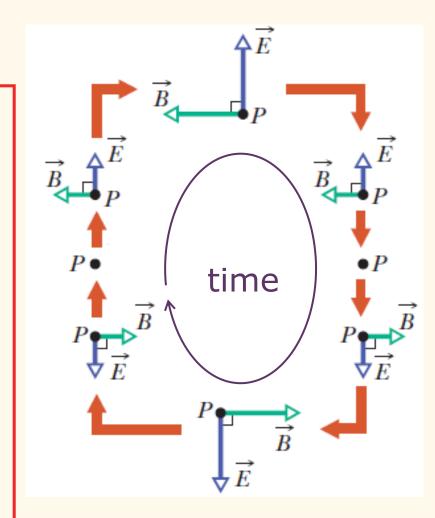
Structure of the EM traveling plane wave

 \overrightarrow{B} and \overrightarrow{B} are perpendicular to the direction of propagation \rightarrow transverse wave

 \vec{E} is **perpendicular** to \vec{B}

 $\overrightarrow{E} \times \overrightarrow{B}$ gives the direction of propagation

 \vec{E} and \vec{B} vary sinusoidally at the same ω in phase



P fixed point in space

Structure of the EM traveling plane wave

 \vec{E} and \vec{B} vary sinusoidally at the same ω in phase

Assuming forward propagation along the x axis

$$E = E_m \sin(kx - \omega t)$$

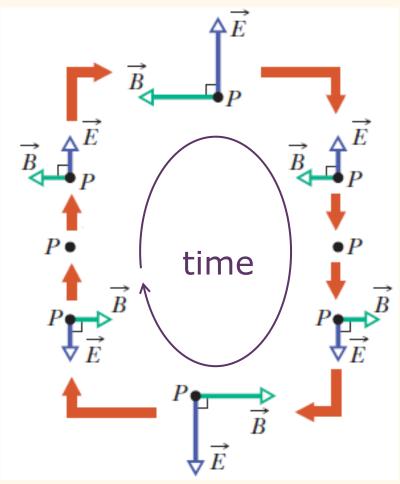
$$B = B_m \sin(kx - \omega t)$$

 E_m , B_m : amplitudes of E and B k: angular wave number ω : angular frequency $c = \omega / k$ speed of light in vacuum

Valid for linear or circular polarization

$$\frac{E_m}{B_m} = \frac{E}{B} = c$$

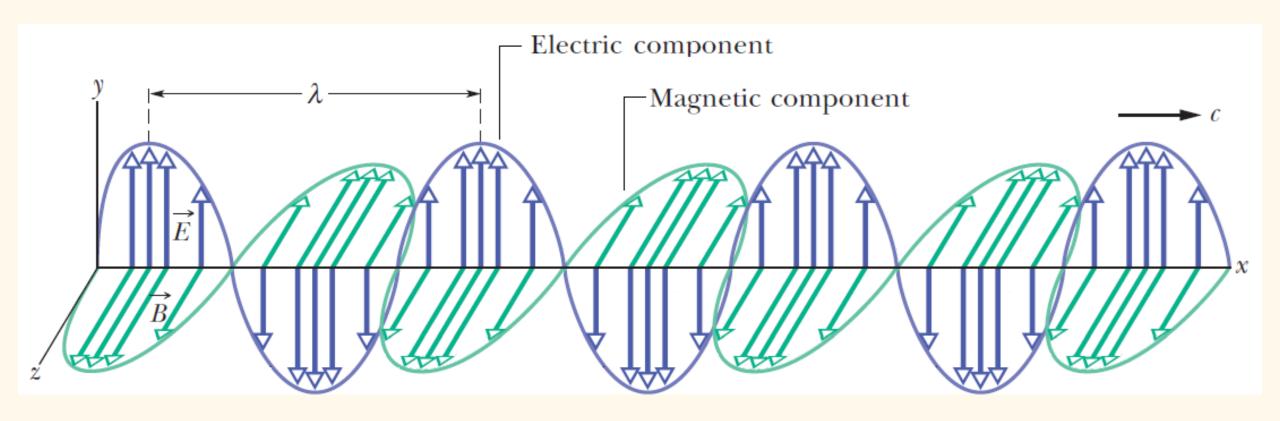
Amplitude & magnitude ratios



P fixed point in space

Representation of the wave:

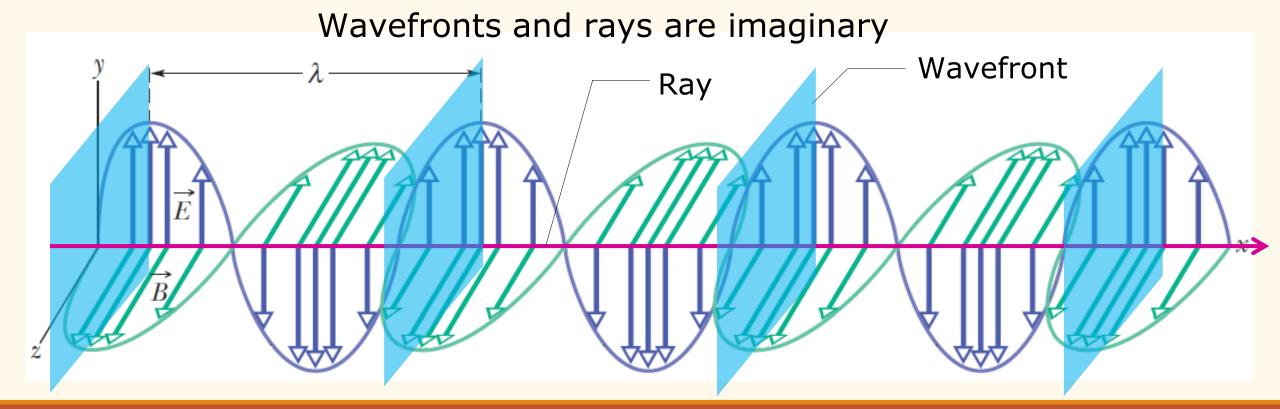
Representations of the **fields** through space at a **fixed instant**



Representation of the wave:

Wavefronts: Surfaces with E at constant phase separated by \(\lambda\)

Rays: Line in the direction of propagation perpendicular to the wavefront



Specificity of EM waves

- Unlike other waves (e.g. sound) EM propagate **without medium**
- Special Relativity Theory:

The speed of light c is **the same no matter the motion** of the
source or the observer

Propagation of EM waves

- Varying B field induces
 a varying E field (M-F)
- Varying E field induces
 a varying B field (M-A)
- And so on ...

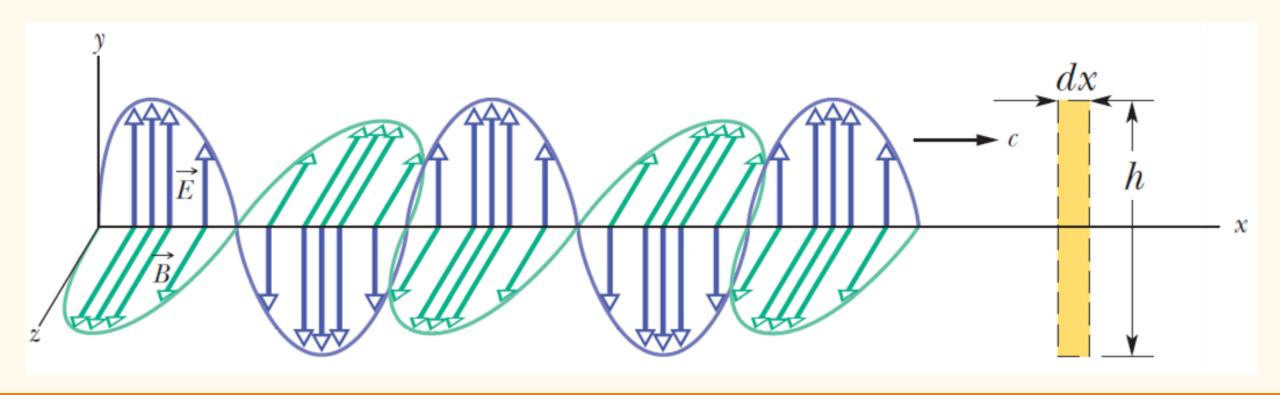
The two fields **continuously create each other** via

induction

→ Next: Exploring this statement

Quantitative analysis

We consider a small rectangle (surface = h dx) perpendicular to Oz



Quantitative analysis

During dt \vec{B} has varied $\rightarrow \phi_B$ in the rectangle varies \rightarrow induced \vec{E} field On one edge electric field is \vec{E} and $\vec{E} + d\vec{E}$ on the other side

$$\oint \vec{E} \cdot d\vec{S} = -\frac{d\phi_B}{dt} \quad (M - F)$$

$$0 + (\cancel{E} + dE)\cancel{N} + 0 - \cancel{E}\cancel{N} = -\frac{d}{dt}(B\cancel{N}dx)$$

$$\frac{dE}{dx} = -\frac{dB}{dt} \qquad \frac{\partial E}{\partial x} = -\frac{\partial B}{\partial t}$$

Note: 2 variables → partial derivative



Quantitative analysis

$$\frac{\partial E}{\partial x} = -\frac{\partial B}{\partial t}$$

$$E = E_m \sin(kx - \omega t)$$
$$B = B_m \sin(kx - \omega t)$$

$$\frac{\partial E}{\partial x} = E_m k \cos(kx - \omega t)$$

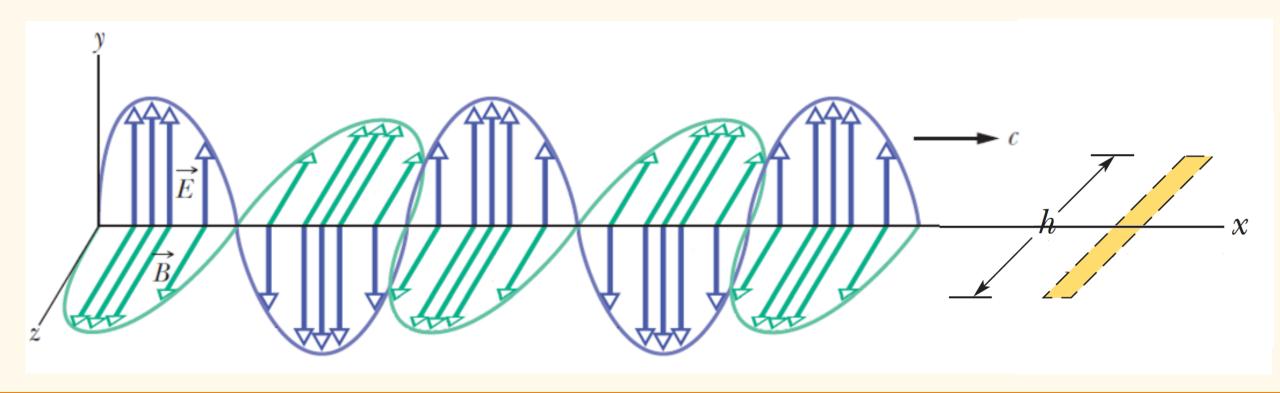
$$\frac{\partial B}{\partial t} = -B_m \,\omega \,\cos(kx \,-\,\omega t)$$

$$E_m k \cos(kx - \omega t) = B_m \omega \cos(kx - \omega t)$$

That demonstrates
$$\frac{E_m}{B_m} = \frac{\omega}{k} = c$$

Quantitative analysis

We consider a small rectangle (surface = h dx) perpendicular to Oy



Quantitative analysis

During dt \vec{E} has varied $\rightarrow \phi_E$ in the rectangle varies \rightarrow induced B field

On one edge electric field is \overrightarrow{B} and \overrightarrow{B} + $d\overrightarrow{B}$ on the other side

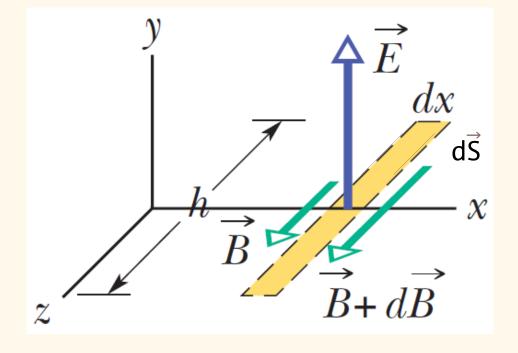
$$\oint \vec{B} \cdot d\vec{S} = \mu_0 \epsilon_0 \frac{d\phi_E}{dt} + \mu_0 i_{enc} \quad (M - A)$$

Note: we assume free space propagation: $i_{enc} = 0$

$$0 - (B' + dB) h + 0 + B h = \mu_0 \epsilon_0 \frac{d}{dt} (E h dx)$$

$$-\frac{dB}{dx} = \mu_0 \epsilon_0 \frac{dE}{dt} \qquad -\frac{\partial B}{\partial x} = \mu_0 \epsilon_0 \frac{\partial E}{\partial t}$$

Note: 2 variables → partial derivative



Quantitative analysis

$$-\frac{\partial B}{\partial x} = \mu_0 \epsilon_0 \frac{\partial E}{\partial t}$$

$$E = E_m \sin(kx - \omega t)$$
$$B = B_m \sin(kx - \omega t)$$

$$\frac{\partial E}{\partial t} = -E_m \,\omega \,\cos(kx \,-\,\omega t)$$

$$\frac{\partial B}{\partial x} = B_m k \cos(kx - \omega t)$$

$$+ B_m k \cos(kx - \omega t) = \# \mu_0 \epsilon_0 E_m \omega \cos(kx - \omega t)$$

$$\frac{E_m}{B_m}\frac{\omega}{k} = \frac{1}{\mu_0 \epsilon_0}$$

$$\frac{E_m}{B_m} \frac{\omega}{k} = \frac{1}{\mu_0 \epsilon_0} \qquad \text{But also} \quad \frac{E_m}{B_m} = \frac{\omega}{k} = c \quad ---- c^2 = \frac{1}{\mu_0 \epsilon_0} \quad ---- c = \frac{1}{\sqrt{\mu_0 \epsilon_0}}$$

$$c = \frac{1}{\sqrt{\mu_0 \epsilon_0}}$$

ENERGY TRANSPORT AND POYNTING VECTOR

$$\vec{S} = \frac{\vec{E} \times \vec{B}}{\mu_0}$$

Since \vec{E} and \vec{B} are perpendicular:

 $-\vec{S}$ is along the direction of propagation

$$S = \frac{EB}{\mu_0} = \frac{1}{c\mu_0}E^2$$

EM waves carry energy

Characterized by the **Poynting vector** \vec{S}

S relates to the instantaneous energy transfer rate per area

$$S = \left(\frac{energy/time}{surface}\right)_{inst} (W/m^2)$$

Note: Poynting vector ≠ spin

ENERGY TRANSPORT AND POYNTING VECTOR

$$I = S_{avg} = \left(\frac{1}{c\mu_0}E^2\right)_{avg} = \frac{1}{c\mu_0}(E^2)_{avg}$$

$$E = E_m \sin(kx - \omega t)$$

$$E^2 = E_m^2 \sin^2(kx - \omega t)$$

$$E^2_{avg} = E_m^2 \left(\sin^2(kx - \omega t)\right)_{avg}$$

$$E^2_{avg} = E_m^2/2$$

$$I = \frac{E_m^2}{2c\mu_0}$$

EM waves carry energy

Characterized by the **Poynting vector** \overrightarrow{S}

Power transfer characterized by the **intensity I**

$$I = S_{avg} = \left(\frac{energy / time}{surface}\right)_{avg}$$
$$= \left(\frac{power}{surface}\right)_{avg}$$

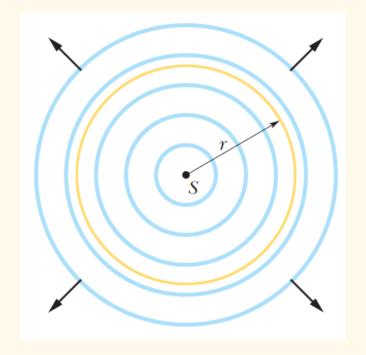
Note: we usualy find the notation : $\langle S \rangle = (S)_{ava}$

Variation of intensity with distance

We assume the EM comes from a point source of power P_S \rightarrow spherical wavefronts close to the source

$$I = \frac{power}{area} = \frac{P_S}{4\pi r^2}$$

Intensity decreases with the squared distance from the source



Light does not have mass but carries momentum

according to quantum mechanics $p = \frac{U}{c}$ Energy carry by the beam of light

speed of light

Energy & momentum transfer to an irradiated object

Light does not have mass but carries momentum

according to quantum mechanics $p = \frac{v}{v}$ Energy carry by the beam of light

EM waves carry energy

speed of light $\Delta p = \frac{\Delta U}{c}$ (total absorption of light)

$$\Delta p = 2 \frac{\Delta U}{c}$$
 (total reflection of light)

 $\Delta \vec{p}$ in direction of propagation of the incoming light

Area A $\Delta U = IA\Delta t$ Beam of intensity

Energy & momentum transfer to an irradiated object

→ Force on the object

$$F = \frac{\Delta p}{\Delta t} = \frac{IA}{c}$$
 (total absorption)

$$F = 2\frac{IA}{c}$$
 (total reflection)

$$\Delta p = \frac{\Delta U}{c}$$

$$F = \frac{IA}{c}$$

 $\Delta p = \frac{\Delta U}{C}$ $F = \frac{IA}{C}$ (total absorption of light)

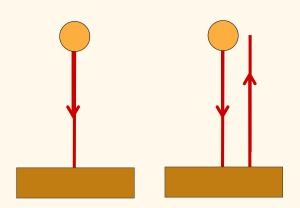
$$\Delta p = 2 \frac{\Delta U}{c}$$

$$F = 2\frac{IA}{C}$$

 $\Delta p = 2 \frac{\Delta U}{c}$ $F = 2 \frac{IA}{c}$ (total reflection of light)

Factor 2 between total absorption and total reflection

→ More momentum is transferred during an elastic collision rather than an inelastic collision



Note: if not total absorption or total reflection The factor is between 1 and 2

$$I = \frac{power}{area} = \frac{rate\ of\ doing(work)}{area}$$

$$= \frac{(F(\Delta x))\Delta t}{area} \qquad \Delta x/_{\Delta t} = speed = c$$

$$in\ case\ of\ light$$

$$I = P_r c \qquad \Delta r = \frac{F(\Delta x)}{area} = pressure = p_r$$

$$p_r = \frac{I}{c}$$

also called "radiation pressure"

Note: Be careful not to confuse the symbol p_r for radiation pressure with the symbol p for momentum.

$$P_r = \frac{I}{c}$$
 (total absorption of light)

$$P_r = 2\frac{I}{c}$$
 (total reflection of light)

If I >>
$$\rightarrow$$
 (focused laser) $P_r >>$ and A <<

Beam of intensity $Area$
 $AU = IA\Delta t$

EM waves carry energy

Energy & momentum transfer to an irradiated object

- → Force on the object
- \rightarrow Pressure (P_r) on the object

$$P_r = \frac{F}{A}$$

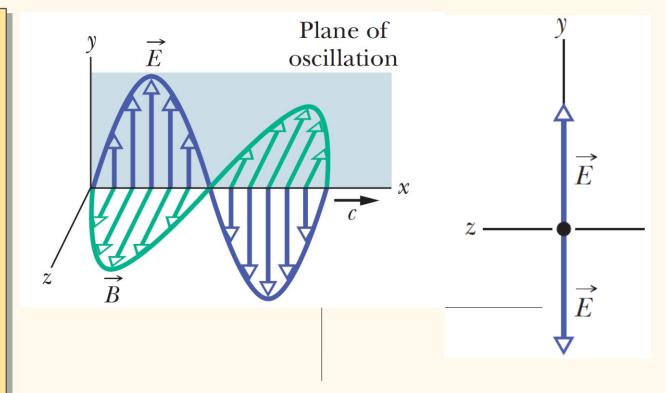
Radiation Pressure

So far we represented the EM wave like this:

 \vec{E} is always in the (Oxy) plane

- → Linear polarization along Oy Vertical polarization
- → (Oxy): plane of oscillation

But light is not always linearly polarized



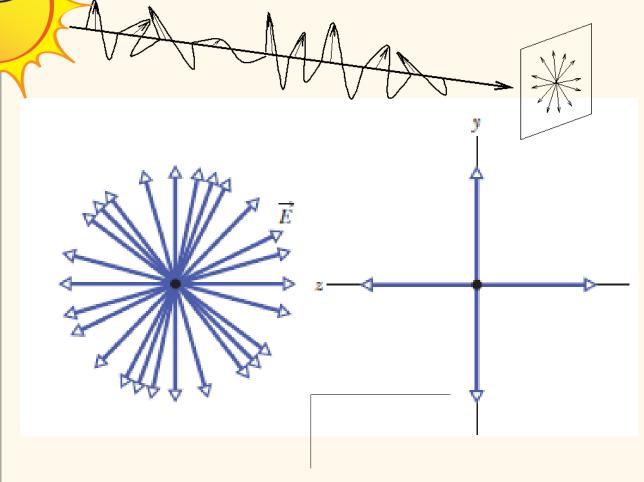
Schematic representation of an EM wave polarized along Oy

Unpolarized light (e.g. sun, lightbulb, ...)

 \vec{E} randomly oriented in a plane perpendicular to the direction of propagation

Separation of \vec{E} in **2 components** \rightarrow along Oz & Oy: E_z and E_y

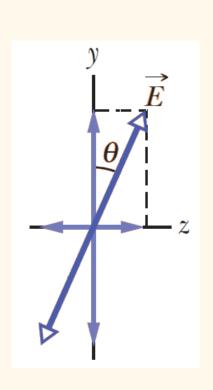
Both oscillate as linearly polarized electric fields

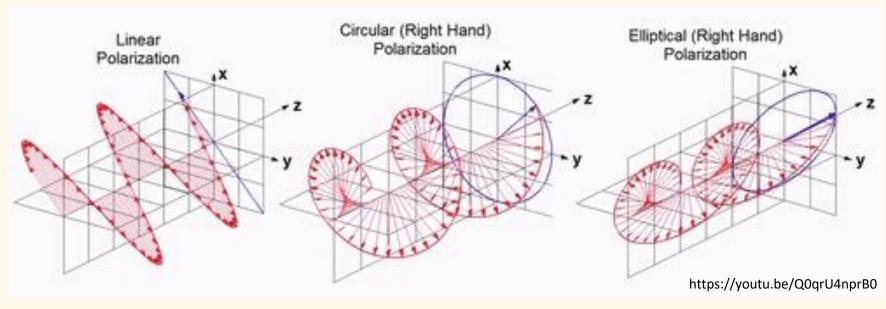


Schematic representation of an unpolarized EM wave

Note on polarization:

- It is possible to have a partially polarized light



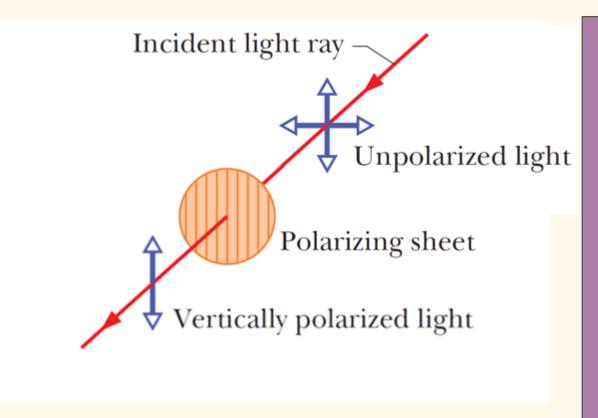


- If both components are in phase
- \rightarrow back to **linear polarization** oriented with angle θ with respect to Oy
- If E_z and E_y have a $\pm \pi/2$ phase shift and the same amplitude
- → circular polarization
- If E_z and E_y have a $\pm \pi/2$ phase shift
- → elliptic polarization

Unpolarized → **Polarized light**

Use of polarizing sheet

- → material that transmit light polarized along one direction
- = Polarizing direction



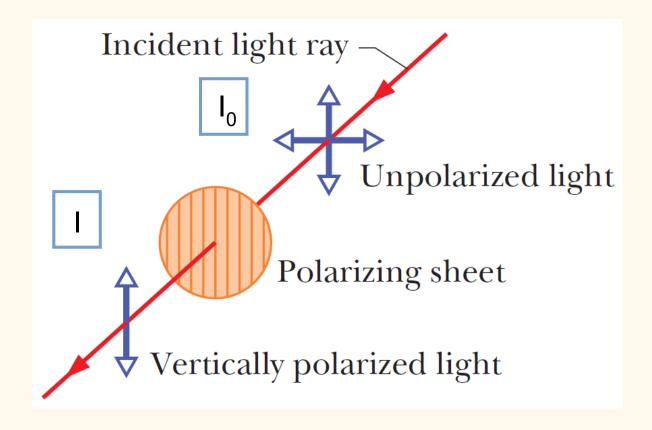
Emerging light is linearly polarized parallel to the polarizing direction

Unpolarized → **Polarized light**

Use of polarizing sheet

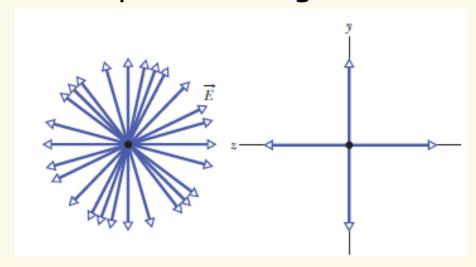
- → material that transmit light polarized along one direction
- = Polarizing direction
- → absorbs light polarized along the perpendicular direction

Note: like always in physics, it's more complicated than that. Polarizers don't really act like filters by « absorbing » some light. We have to deal with quantum mechanics for a full understanding

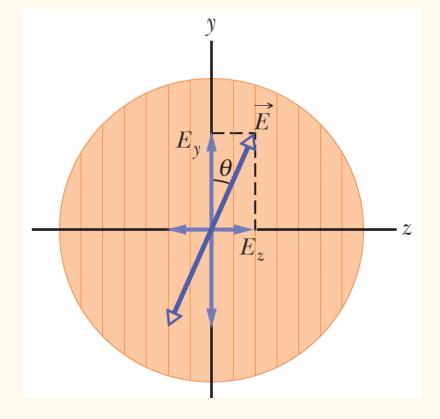


Intensity of the emerging light:

- For unpolarized light



$$I = I_0 / 2$$
 (one-half rule)



Note: 2 polarizers with perpendicular polarizing directions transmit no light

Intensity of the emerging light:

→ For linearly incident polarized light

$$\vec{E} = E_y \overrightarrow{u_y} + E_z \overrightarrow{u_z} = E \cos(\theta) \overrightarrow{u_y} + E \sin(\theta) \overrightarrow{u_z}$$

$$I_0 = \frac{E^2}{2c\mu_0}$$

→ For Emerging light (sheet polarized along Oy)

$$\vec{E} = E_y \overrightarrow{u_y} = E \cos(\theta) \overrightarrow{u_y}$$

$$I = \frac{E^2}{2c\mu_0} \cos^2(\theta) \qquad \qquad I = I_0 \cos^2(\theta) \qquad \qquad \text{(Malus law)}$$

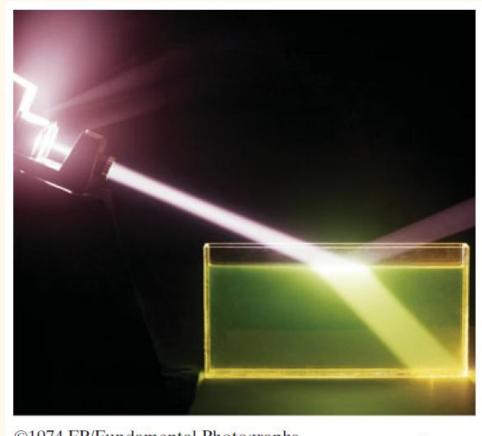
Geometrical optics

We only consider rays of light and do not treat light as a wave (but rays have a wavelength)

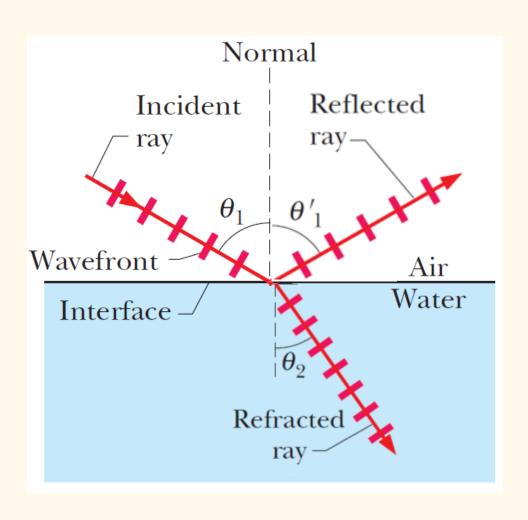
→ approximation

Easier to treat propagation of light:

- Interfaces between mediums
- Design of optical instruments

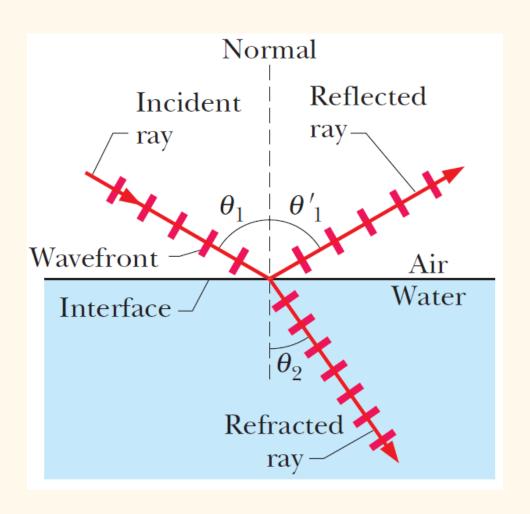


©1974 FP/Fundamental Photographs



An Incident ray of light arrives at an interface (here air / water) With an angle θ with respect to the normal to the interface

- Some light is reflected
- → Reflected ray
- Some light travels in the other medium
- → Refracted ray

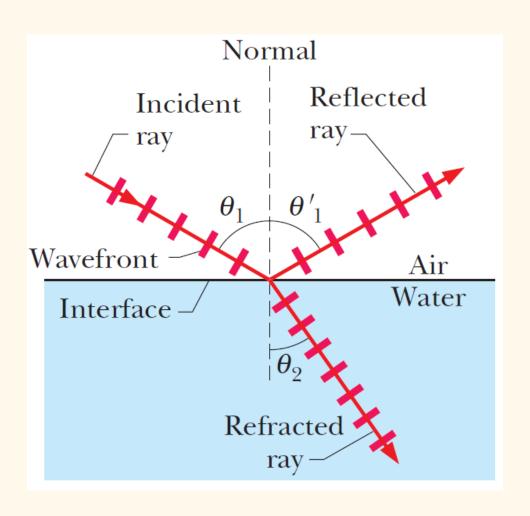


Vocabulary

 θ_1 is the angle of incidence θ'_1 is the angle of reflection θ_2 is the angle of refraction

Angles between the rays and the normal

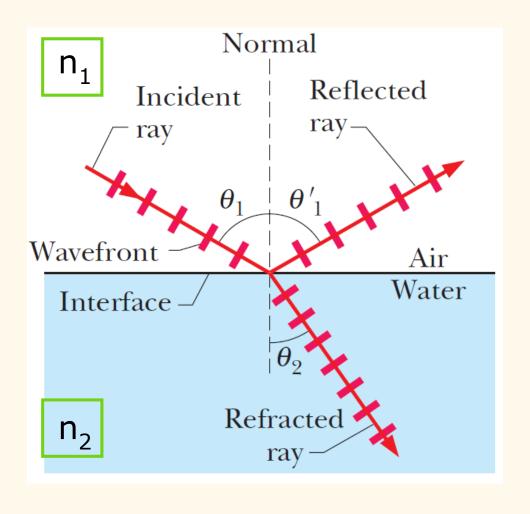
The normal and the incident ray define the plane of incidence



An Incident ray of light arrives at an interface (here air / water) With an angle θ with respect to the normal to the interface

Directions of the reflected ray and the refracted ray are determined by Snell's laws

Note: In France we call them *The Laws of Snell – Descartes* (S-D)



1st S-D law:

The reflected ray and the refracted ray are in the plane of incidence

2nd S-D law:

The **angle of reflection** is equal to the **angle of incidence**

$$\theta'_1 = \theta_1$$

3rd S-D law:

The **angle of refraction** is given by

$$n_1 \sin(\theta_1) = n_2 \sin(\theta_2)$$

n₁, n₂: **indexes of refraction** of the mediums

$$n = \frac{speed \ of \ light \ in \ the \ vacum}{speed \ of \ light \ in \ the \ medium} = \frac{c}{v}$$

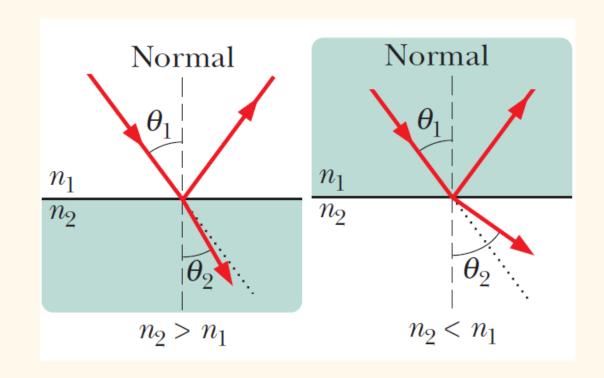
That implies: n ≥ 1

Typical values:
$$\begin{cases} n_{air} \simeq 1 \\ n_{eau} \simeq 1.33 \\ n_{glass} \simeq 1.4 - 1.7 \end{cases}$$

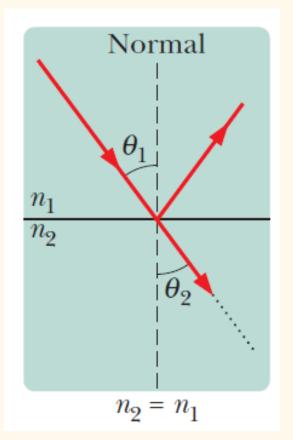
Rewriting the 3rd S-D law

$$sin(\theta_2) = \frac{n_1}{n_2} sin(\theta_1)$$

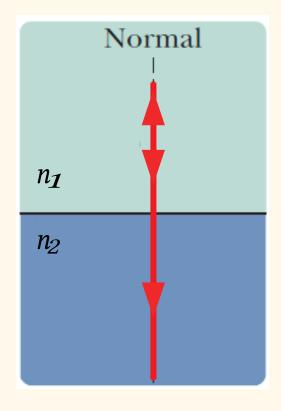
If $n_2 > n_1$ (resp. $< n_1$) the refracted ray is bend towards (resp. away) from the normal



Note:



If $n_1 = n_2$ (index matching) the incident ray is not deviated



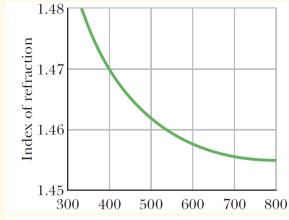
If
$$\theta_1 = 0^{\circ}$$
 (normal incidence)
 $\rightarrow \sin(\theta_1) = 0$

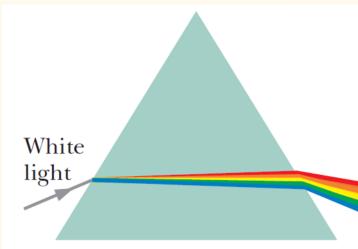
Thus,
$$\theta'_1 = 0$$

The reflected beam is superposed to the incident ray

And
$$sin(\theta_2) = 0$$
, so $\theta_2 = 0$
 \rightarrow The refracted ray is not deviated

Note that **n** is a function of the wavelength (e.g. $n_{(\lambda)}$ for fused quartz)





Beam of white light = superposition of **Monochromatic** rays (each with a different λ) with the same θ_1

- \rightarrow different θ_2
- → Chromatic dispersion

Prisms separate wavelengths with two refractions

The same phenomena occurs in raindrops to form rainbows

TOTAL INTERNAL REFLECTION

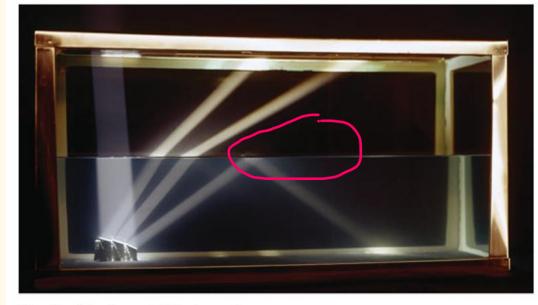
S-D law of refraction:

$$n_1 \sin(\theta_1) = n_2 \sin(\theta_2)$$

$$\rightarrow \theta_2 = asin\left(\frac{n_1}{n_2}sin(\theta_1)\right)$$

We assume $n_1 > n_2$ (e.g. medium 1 is water, 2 is air)

 \rightarrow Above a certain value of θ_1 , we cannot calculate θ_2 (asin(x) with x > 1 is not defined)



Ken Kay/Fundamental Photographs

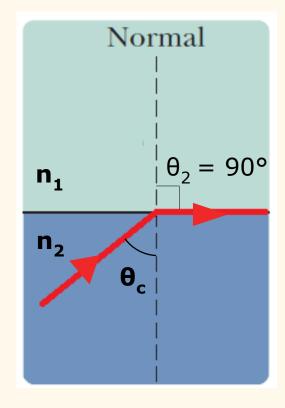
In such cases, the refracted ray **does not exist** → only reflection in medium 1

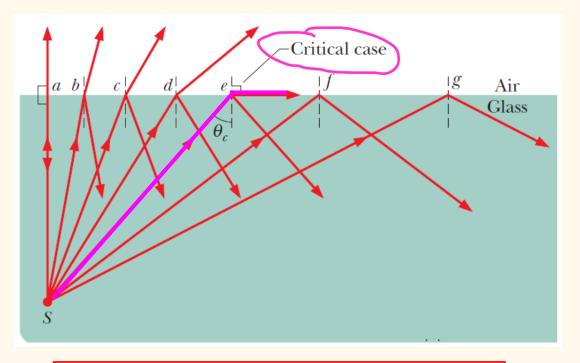
→ Total Internal Reflection (TIR)

TOTAL INTERNAL REFLECTION

For TIR, we define the **critical angle** θ_c such that $\theta_2 = 90^\circ$: $n_1 \sin(\theta_c) = n_2 \sin(90) = n_2$

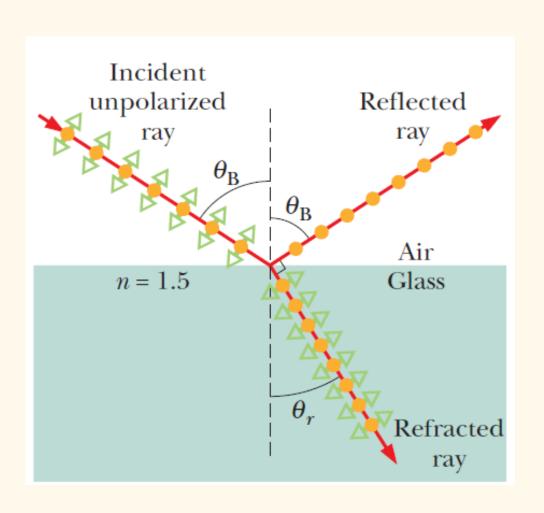
$$\theta_c = \operatorname{asin}\left(\frac{n_2}{n_1}\right)$$





TIR if $n_1 > n_2$ and $\theta > \theta_c$

POLARIZATION BY REFLECTION

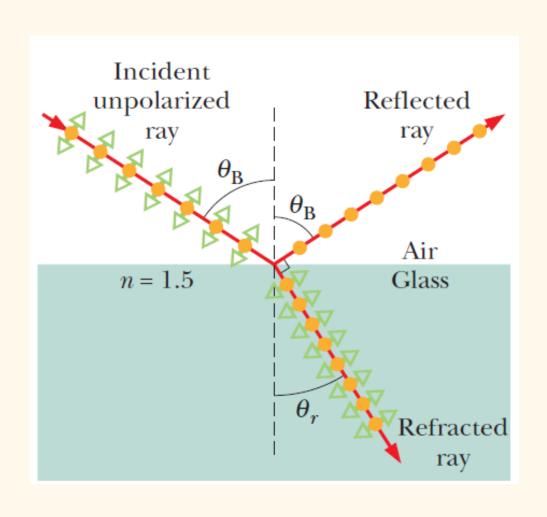


Previously, we saw that light passing through a polarizing sheet is polarized

Reflection Brewster angle θ_{B} For $\theta_{1} = \theta_{B}$ (2nd S-D)

- → Reflected and refracted rays are perpendicular
- → Reflected ray is polarized perpendicularly to the plane of incidence

POLARIZATION BY REFLECTION



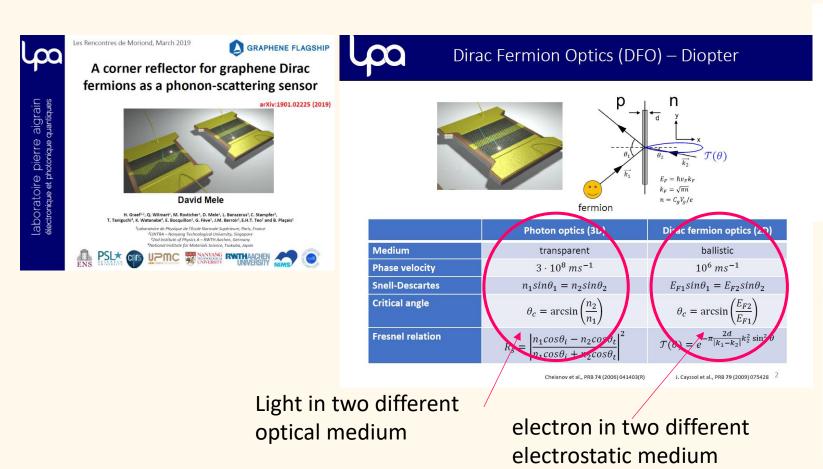
We have:
$$\theta_B + \theta_2 = 90$$

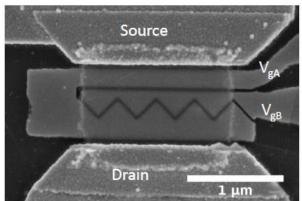
with
$$n_1 \sin(\theta_B) = n_2 \sin(\theta_2)$$
 (3rd S-D)

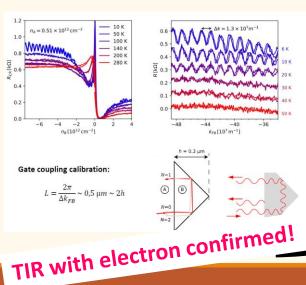
So:
$$n_1 \sin(\theta_B) = n_2 \sin(90 - \theta_B) = n_2 \cos(\theta_B)$$

Then:
$$tan(\theta_B) = \frac{n_2}{n_1} - \theta_B = arctan\left(\frac{n_2}{n_1}\right)$$

One of my research interest was to retrieve the Snell laws and total Internal Reflexion, not with light but with high speed electrons, called ballistic electrons that « behave like light » in electronics 2D based material



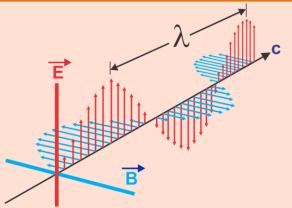




KEY POINTS

Light as an EM wave

Structure of the traveling plane EM wave



Direction of propagation

$$\frac{E}{B} = c$$

Poynting vector, intensity and radiation pressure

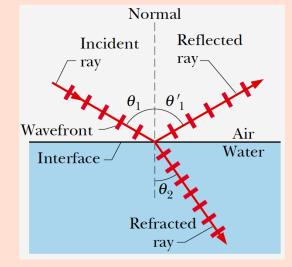
$$\vec{S} = \frac{E \times B}{\mu_0}$$

$$I = \frac{E_m^2}{2c\mu_0}$$

Polarized and unpolarized light

Snell-Descartes laws

TIR and Polarization by reflection



$$n_1 sin(\theta_1) = n_2 sin(\theta_2)$$

READING ASSIGNMENT

Chapter 34 of the textbook