Instructions:

• Duration : 2 Hours

• The goal of this working lab is to build the electronic circuits studied in the courses and understand the concepts behind them with practical circuits.

1 Materials

2 Introduction: Theory

- 1. Use a paper to draw and describe the diffraction process with 1 slit.
- 2. Do the same with a double-slit experiment.
- 3. Consider now, 2 electro-magnetic waves arriving at a screen, they form an angle θ with the normal incidence. They have the same frequency f and same wavelength λ . They are described by the equations:
 - (a) $E_1(t) = E_0 \sin \omega t$
 - (b) $E_2(t) = E_0 \sin \omega t + \phi$
- 4. Express the equation of the electro-magnetic wave at the screen $E(t) = E_1(t) + E_2(t)$
- 5. Express ϕ as function of the path length difference.
- 6. Calculate the intensity $I \approx \langle E^2(t) \rangle$.
- 7. For what value of ϕ , you have a maximum of intensity? And the minimum? Explain your choices.
- 8. Finally, express the angle θ as function of D, the distance Slit-Screen and x_m , the distance between the order 0 and m maxima.

3 Experiment 1: Simple slit

3.1 Preparation

- Place the laser in front of the slit at a confortable distance.
- Place the screen/blackboard at $\sim 1-2$ m from the slit. Put a A4 page to avoid any reflection from the blackboard.
- Choose a simple slit. Note down the opening length d.

3.2 Manipulations

1. Measure the distances x_m between the maximum of intensity and the center (x_1 are the ones next to the center, x_2 are the second order...).

- 2. Plot x_m as function of m and try to fit a curve from the points. From the slope, deduce d, the opening length of the slit.
- 3. Deduce d, using the Bragg's law: $d \sin \theta = m\lambda$. Is the answer coherent with the chosen slit?
- 4. Choose a different slit and repeat the experiment. What is happening to the diffraction pattern?
- 5. Replace the slit with one of your hair, what do you observe for the diffraction pattern. What is the size of your hair?

4 Experiment 3: Double slit

4.1 Preparation

• Replace the simple slit by the double slit experiment.

4.2 Manipulation

- 1. Measure the distance of the interference pattern Δx .
- 2. Deduce the distance between the two openings e using the interference formula.
- 3. Repeat the manipulation with a different distance e. Are the values coherent?