ESP Lab Work JUNIA_{ISEN} 2024-2025

Instructions:

• Duration : 2 Hours

• The goal of this working lab is to simulate and find the magnification of a microscope

Ray Optics Simulation Lab

Website: https://ricktu288.github.io/ray-optics/

Part 1: Ideal Lens Setup

• File to import: Lab_optics_ideal_lens

1. Place an ideal lens

- Go to $Glass \rightarrow Ideal\ Lens.$
- Set the height of the lens to at least 300 units.
- Align the lens vertically, centered on the zero mark of the ruler grid.

2. Adjust the focal length

• Set the lens to a +300 units focal length.

3. Trace image formation

- Use Light Source \rightarrow Single Ray to draw the three principal rays (parallel, focal, and central) from the top of your object to determine the image point.
- (Optional) Repeat for other points on the object to complete the image.

4. Is the image real or virtual?

• Observe the rays and justify your answer.

Part 2: Changing the Focal Length

5. Explore magnification

- Adjust the focal length slider and observe the effect on the image position and magnification.
- Based on your calculations, what focal length would produce an image three times larger than the object?

•	• Do a drawing for this configuration using three particular rays					

Part 3: Real Lens vs. Ideal Lens

- 6. Replace by a plano-convex lens
 - Remove the ideal lens and place a plano-convex lens (convex on one side, flat on the other) $Glass \rightarrow Spherical\ Lens$. Use a refractive index of 1.5 (e.g., glass in air).
- 7. Apply the lens maker's formula: $\frac{1}{f} = \left(\frac{n_{lens}}{n_{medium}} 1\right) \left(\frac{1}{r_1} \frac{1}{r_2}\right)$
 - Solve for r_1 (the convex side) to match the focal length used in Part 1.

$$r_1 =$$

- 8. Repeat with a bi-convex lens
 - Using the same focal length and refractive index, apply the lens maker's formula to find the common radius of curvature r of a symmetrical bi-convex lens (convex on both sides).

$$r =$$

! Tips for simulation! According to your calculation you may end up with a lens height that will be smaller than the object. In this case you can also use a beam of parallel rays (Light Source \rightarrow beam) instead of your object.

9. Simulation

- Are you able to **verify that the image remains consistent** with the previous cases?
- If you're not able to replace the ideal lens by a real lens, **import file:** Lab_optics_real_lens_2 and trace the 3 particular rays from 3 different points of the object.

• What do you observe? How can you explain it?

Part 4 – Construction of a Microscope (with ideal lenses)

• Import Lab optics microscope

In this example:

- The scale along the x-axis is: 100 units = 1 cm
- The scale along the y-axis is: 100 units = 50 μ m

10. Place the objective lens

- Choose a short focal length, e.g., $f_{obj} = 50$ units = 0.5 cm
- Place the objective lens somewhere on the optical axis, to the right of the bacteria (Yes, I did my best to draw that bacteria!)
- What do the orange rays correspond to?

11. Place the object

- Position the object (i.e., the starting point of the rays) slightly **beyond the focal point** of the objective lens, e.g., at p = 80 units = 0.8 cm, and 20 units above the central axis (which corresponds to a 10 µm height)
- Where and how is the image formed? Is the image real or virtual? Inverted or upright?

12. Place the eyepiece (ocular) lens

- Add a second ideal lens to act as the eyepiece, with a longer focal length, e.g., $f_{eye} = 250 \text{ units} = 2.5 \text{ cm}$ (You can choose different values as long as $f_{eye} > 5f_{obj}$)
- Adjust the position of the eyepiece so that the rays exit the eyepiece parallel
- What can you say about the relationship between the focal point of the eyepiece and the position i of the first image?
- Where is the final (second) image in this specific case?
- What about the observer looking through the eyepiece? Does they need to accommodate to see anything clearly?
- What if the microscope is not perfectly set up?

Draw a schematic of your microscope using particular rays

	1	
	 	
	 	
	 	

- Can you replace the ideal lenses by real lenses? Show your instructor
- What can we say about the final (second) image in this specific case?

• Optional: can you add a model of the eyeball in your simulation?

4. Magnification

The total magnification of the microscope in this setup is the product of two contributions:

$$M_{total} = m_{objective} \times m_{eyepiece} = m \times m_{\theta}$$

• m: the lateral magnification provided by the objective lens. If the object is just beyond the focal point of the objective, it produces a real, inverted image, with: $m = -\frac{i}{p} = -\frac{s}{f_{obj}}$ where s is the distance between the back focal plane of the objective and the front focal plane of the eyepiece. Using your measured values of, i, s and f_{obj} , verify whether the relation of lateral magnification holds true.

h	p	i	S	f_{obj}	f_{eye}	$m = -\frac{i}{p}$	$m = -\frac{s}{f_{obj}}$

5. Angular Magnification

• m_{θ} : The angular magnification provided by the eyepiece lens (assuming the final image is at infinity) is given by: $m_{\theta} = \frac{D}{f_{eye}} = \frac{25cm}{f_{eye}}$ where D=25cm is the near point of the human eye. Compute:

$$m_{\theta} =$$

6. Total Magnification

• Using your previous result for mmm (the lateral magnification by the objective), the **total** magnification of the microscope is:

$$M_{total} =$$

7. Apparent Size of the Bacterium

• The angular size without the microscope is given by: $\theta_{ref} = \frac{h}{D}$ with h=10 µm is the object (here a bacteria) and D=25 cm. The angular size through the microscope is: $M_{total} \times \theta_{ref}$ and finally the apparent size under the microscope, as perceived at the near point, is $\theta_{app} \times D$.

Apparent size of the bacteria =

Part 5 – Polychromatic light

- Import Lab optics microscope chromatic
- And also import Lab optics microscope chromatic real
- What do you observe? How can you explain it?
- What are the consequences for microscopy or astronomy? Find an image online that illustrates this effect.

Part 6 – Have fun

If you have time, visit the gallery and explore the different simulations to understand:

- What is a Frensel Lens?
 - → https://phydemo.app/ray-optics/simulator/
- How do rainbows happen in the sky?
 - → https://phydemo.app/ray-optics/gallery/rainbows
- How does a telescope work?
 - → https://phydemo.app/ray-optics/gallery/newtonian-telescope
- What is a Köhler Illumination?
 - → https://phydemo.app/ray-optics/gallery/koehler-illumination