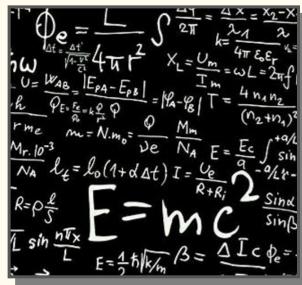
SUMMER PROGRAM - PHYSICS COURSES

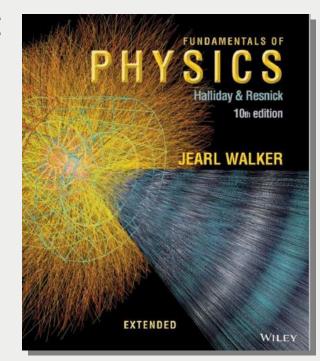


Lecturer for the 2nd part of the program Dr. David MELE david.mele@junia.com

Images: univ-catholique.fr wikipedia.org lilletourism.com

Content of this class

- Electromagnetic Oscillations & Alternating Current
- Maxwell's Equations & Magnetism of Matter
- Electromagnetic Waves
- Images
- Interference
- Diffraction

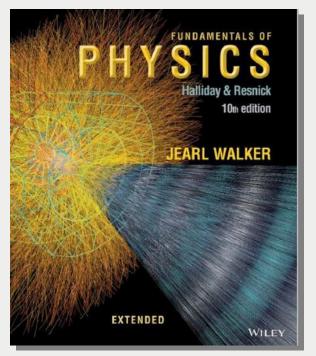


Textbook: Fundamental of Physics, 10th edition, Wiley, J. Walker, D. Halliday, R. Resnick, Chapters 31 -36

This course will essentially follow the textbook

Reading assignments: Have a look at the next chapter before the lesson

Note: Expect specified otherwise, all figures in this presentations are adapted from the textbook



Textbook: Fundamental of Physics, 10th edition, Wiley, J. Walker, D. Halliday, R. Resnick, Chapters 31 -36

Friday Saturday Sunday Monday Tuesday Wednesday Thursday Friday Sa June 27 28 29 July 30 1 2 3 4	Saturday Sunday
Tupe 27 28 20 Tuly 30 1 2 2	
	5 6
9 am - 10 am Chapter 31 P am - 10 am Chapter 33 Chapter 33 Chapter 33	
Lecture 10 am - 11am 10 am - 11am Chapter 35 Lecture	
11 am - 12 pm Chapter 31 Exercice 11 am - 12 pm Chapter 36 Exercice	
12 pm - 1:30 pm 12 pm - 1:15 pm Lunch time Group photo Lunch time Lunch time Lunch time Lunch time	
1:15 - 2 pm Chapter 31 Chapter 31 Fxercice	
2 pm - 3 pm 2 pm - 3 pm Chapter 35 Exercice Chapter 34	
3 pm - 4 pm Chapter 32 Lecture Chapter 36 Lecture	
4 pm - 4:15 4 pm - 4:15 Chapter 34 Exercice	
July 7 8 9 10 11	12 13
9 am - 12 pm	- 10
12 pm - 1:15 pm	
lab class lab class	
1120 pm 4120 pm	
July 14 15 16 17 18	19 20
9 am - 12 pm	
12 pm - 1:15 pm IEMN Visit Lab class IEMN Visit Lab class	
1:45 pm - 4 pm	
July 21 22 23 24 25	26 27
9 am - 12 pm EXAM (2h)	26 27
chapters 12 pm - 2 pm 31-33-34-35-36 (not 32)	
2 pm - 4 pm	

Intermediate evaluation (MCQ) + final test

Before we start

Physics requires to handle some mathematical tools In this class, we will use accessible tools

→ In the future of your studies, you will learn more advanced tools

→ We will have to admit some results

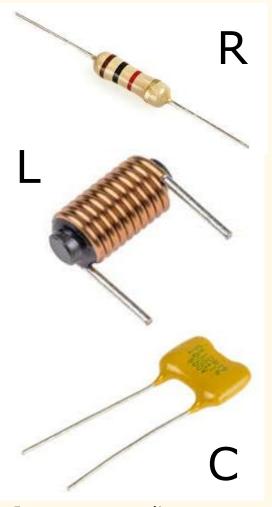
- Electromagnetic Oscillations & Alternating Current

- Maxwell's Equations & Magnetism of Matter
- Electromagnetic Waves
- Images
- Interference
- Diffraction

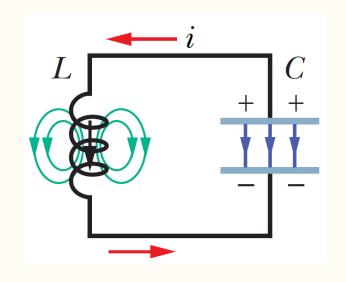
ELECTROMAGNETIC OSCILLATIONS & ALTERNATING CURRENT

Textbook: Chapter 31

- LC OSCILLATIONS
- DAMPED OSCILLATIONS IN AN RLC CIRCUIT
- FORCED OSCILLATIONS OF THREE SIMPLE CIRCUITS
- THE SERIES RLC CIRCUIT POWER IN ALTERNATING-CURRENT CIRCUITS
- TRANSFORMERS



Images: rs-online.com



Energy stored in the E field of the capacitor

$$U_E = \frac{q^2}{2C}$$

q: Charge stored (C) C: Capacitance (F)

Energy stored in the B field of the inductor

$$U_{B} = \frac{Li^{2}}{2}$$

i: Current (A)

L: Inductance (H)

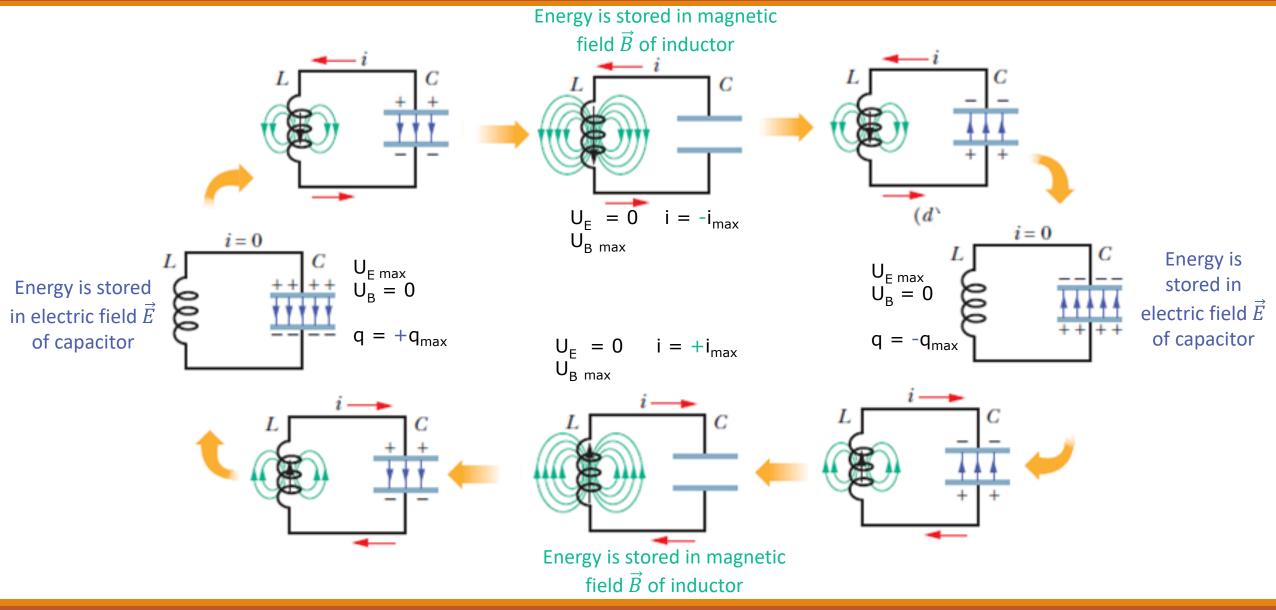
System: LC with an energy U distributed between U_E & U_R Assuming no losses

What will happen?

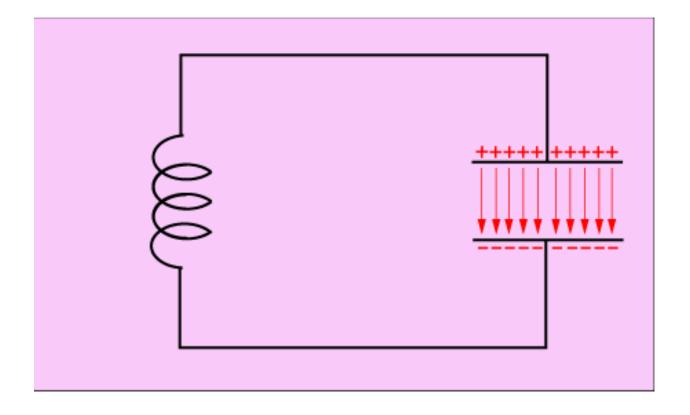
- → Discharge of C in L
- → C completely discharged
- → Charge of C by i
- → C completely charged
- → Discharge of C in L

And so on ...

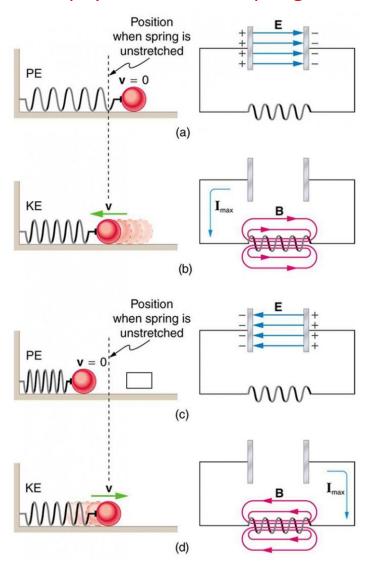
Note: q is the charge stored on a given plate

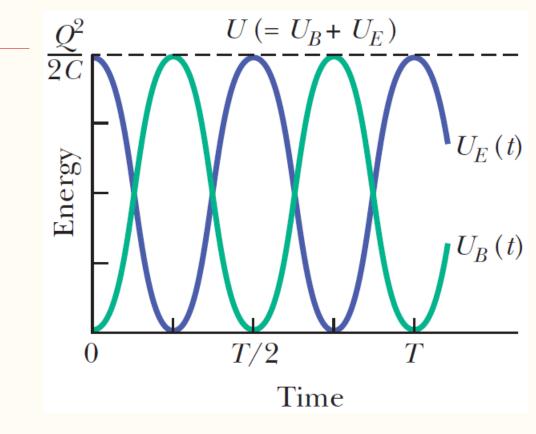


https://youtu.be/2 y 3 3V-so http://tinyurl.com/ufbdsz3



Same physics as a mass-spring model !!!





Q: Max. charge stored (C)

U_E and U_B vary during time but the total amount of energy is constant

System: LC with an energy U distributed between U_E & U_B Assuming no losses

What will happen?

- → Discharge of C in L
- → C completely discharged
- → Charge of C by i
- → C completely charged
- → Discharge of C in L

And so on ...

Analytical resolution:

$$U = U_B + U_E$$

$$U = \frac{Li^2}{2} + \frac{q^2}{2C}$$

Given that U is constant through time: $\frac{dU}{dt} = 0$

$$\frac{dU}{dt} = 0$$

$$\frac{d}{dt}\left(\frac{Li^2}{2} + \frac{q^2}{2C}\right) = 0$$

$$\frac{d}{dx}(y_{(x)}^2) = 2y_{(x)}\frac{d}{dx}(y_{(x)})$$

$$\frac{Li\frac{di}{dt} + \frac{1}{C}q\frac{dq}{dt} = 0$$

$$Li\frac{di}{dt} + \frac{1}{C}q\frac{dq}{dt} = 0$$
 However, $i = \frac{dq}{dt}$, so, $\frac{di}{dt} = \frac{d^2q}{dt^2}$

So we have:

$$L \frac{dq'}{dt} \frac{d^2q}{dt^2} + \frac{1}{C} q \frac{dq'}{dt} = 0$$

$$L\frac{d^2q}{dt^2} + \frac{q}{C} = 0$$

The differential equation for the charge in an LC circuit without resistance

Solution:
$$q_{(t)} = Q \cos(\omega t + \phi)$$
 with $\omega = \frac{1}{\sqrt{LC}}$

$$\omega = \frac{1}{\sqrt{LC}}$$

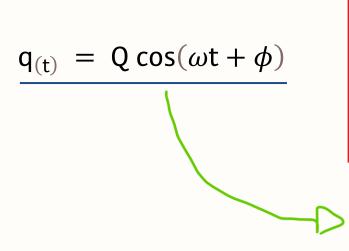
Q: the maximum charge

ω: the natural angular frequency

φ: a phase constant

$$q_{(t)} = Q \cos(\omega t + \phi)$$

but,
$$U_{E(t)}=\frac{q(t)^2}{2C}$$
 and,
$$U_{B(t)}=\frac{Li(t)^2}{2}=\frac{L\left(\frac{dq(t)}{dt}\right)^2}{2}$$



SO,
$$U_{E(t)} = \frac{Q^2}{2C} \cos^2(\omega t + \phi)$$

and,
$$U_{B(t)} = \frac{Q^2}{2C} \sin^2(\omega t + \phi)$$

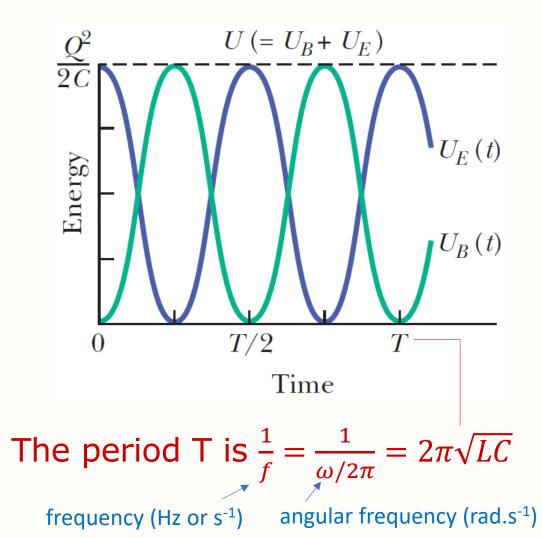
 $I = -\omega Q$ is the max. current

from
$$\mathbf{i} = \frac{dq}{dt} = -\omega Q \sin(\omega t + \phi) = \lim_{t \to \infty} \mathbf{l} \sin(\omega t - \phi)$$

Periodic solutions that verify that $U = U_{B(t)} + U_{E(t)}$ is constant and equals $\frac{Q^2}{2Q^2}$

Remarks: When $U_E = Q^2/(2C)$ is max., U_B is zero, and conversely The potential difference across C, $V_C = q/C$ is also periodic

When
$$q_{(t)} = + \text{ or } - Q$$
, $i_{(t)}$ is zero
When $I_{(t)} = + \text{ or } - I$, $q_{(t)}$ is zero

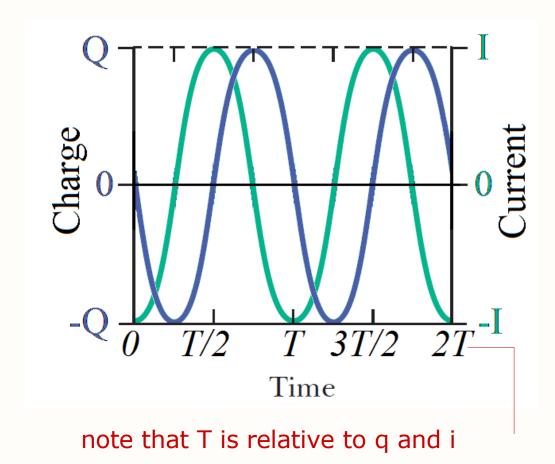


System: LC with an energy U distributed between $U_E \& U_B$ Assuming no losses

We demonstrated that U_E & U_B oscillate periodically

The natural angular frequency

$$\omega$$
 equals $\frac{1}{\sqrt{LC}}$



System: LC with an energy U distributed between U_E & U_B Assuming no losses

We demonstrated that $U_E \& U_B$ oscillate periodically

The natural angular frequency

$$\omega$$
 equals $\frac{1}{\sqrt{LC}}$

So far we assumed all components had no resistance

→ no loss of energy by thermal dissipation

What will happen with losses?

System: LC with an energy U distributed between $U_E \& U_B$ Assuming no losses

We demonstrated that $U_E \& U_B$ oscillate periodically

The natural angular frequency

$$\omega$$
 equals $\frac{1}{\sqrt{LC}}$



Energy stored in the E field of the capacitor

$$U_E = \frac{q^2}{2C}$$

q: Charge stored (C) C: Capacitance (F)

Energy stored in the B field of the inductor

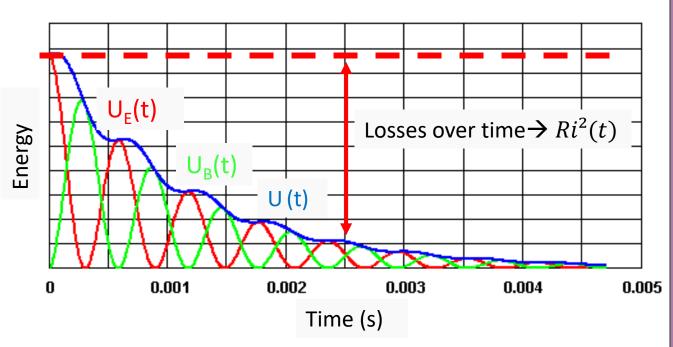
$$U_B = \frac{Li^2}{2}$$

i: Current (A)L: Inductance (H)

System: RLC with an energy U distributed between U_E & U_B Loss of energy with R

Rate of energy dissipation \rightarrow i²R

R: resistance of the resistor (Ω)



Measurement of V_C in an RLC circuit

The system oscillates but the amplitude decreases over time

System: RLC with an energy U distributed between $U_E \& U_B$ Loss of energy with R What will happen?

- → Discharge of C in L
- → C completely discharged
- → Charge of C by i
- → C completely charged
- → Discharge of C in L

And so on ... until it stops

Analytical resolution:

$$U = U_B + U_E$$
 This is still true for RLC
$$U = \frac{Li^2}{2} + \frac{q^2}{2C}$$

But now U is no more constant through time:

$$\frac{dU}{dt} = -Ri^2$$

 $\frac{dU}{dt} = -Ri^2$ minus sign because we loose energy we loose energy

Following the same route than for LC, we have: $Li\frac{di}{dt} + \frac{q}{C}\frac{dq}{dt} = -Ri^2 \qquad \text{or} \qquad Li\frac{di}{dt} + \frac{q}{C}\frac{dq}{dt} + Ri^2 = 0$

$$Li\frac{di}{dt} + \frac{q}{C}\frac{dq}{dt} = -Ri^2$$

$$Li\frac{di}{dt} + \frac{q}{C}\frac{dq}{dt} + Ri^2 = 0$$

Again, we substitute
$$i = \frac{dq}{dt}$$
 and $\frac{di}{dt} = \frac{d^2q}{dt^2}$

To obtain:
$$L \frac{dq}{dt} \frac{d^2q}{dt^2} + \frac{1}{C}q \frac{dq}{dt} + R \left(\frac{dq}{dt}\right)^T = 0$$
 or $L \frac{d^2q}{dt^2} + R \frac{dq}{dt} + \frac{q}{C} = 0$

$$L\frac{d^2q}{dt^2} + R\frac{dq}{dt} + \frac{q}{C} = 0$$

$$L\frac{d^2q}{dt^2} + R\frac{dq}{dt} + \frac{q}{C} = 0$$

 $L\frac{d^2q}{dt^2} + R\frac{dq}{dt} + \frac{q}{C} = 0$ The differential equation for the **charge decay** in an RLC circuit

That admits as solution:
$$q_{(t)} = Q e^{\frac{-Rt}{2L}} \cos(\omega' t + \phi)$$

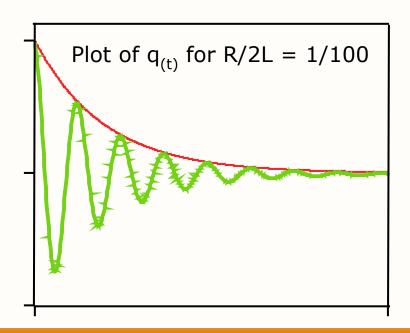
With:
$$\omega' = \sqrt{\omega^2 - \left(\frac{R}{2L}\right)^2}$$
 the angular frequency of the damped oscillations,

$$\omega = \frac{1}{\sqrt{LC}}$$
 the natural angular frequency, ϕ a phase constant and Q the max. stored charge

Remarks:

We have:
$$\omega' = \sqrt{\omega^2 - \left(\frac{R}{2L}\right)^2} < \omega$$
 but for R small, $\omega' \simeq \omega$

Expression of the charge





$$q_{(t)} = Q e^{\frac{-Rt}{2L}} \cos(\omega' t + \phi)$$

But,
$$U_E = \frac{q^2}{2C}$$

So,
$$U_{E(t)} = \frac{Q^2}{2C} e^{\frac{-Rt}{L}} \cos^2(\omega' t + \phi)$$

Oscillations

Damped Amplitude

System: RLC with an energy U distributed between U_E & U_B Loss of energy with R

Energy loss can be easily calculated for U_E

→ Decay of the electric energy

So far, we only considered circuits that have been given some energy and studied their behavior during time

→ Now we will continuously supply energy to circuits at a given frequency

e.g. supply of an alternative current to an RLC circuit

Note on alternative currents:

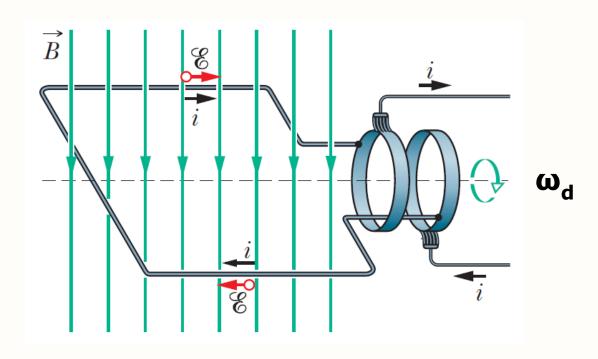
ac: Alternative Current

→ oscillating

dc: Direct Current

→ nonoscillating

By extension, we also use the terms ac and dc for voltages



Generates an alternative voltage that can drive an alternative current d in $\omega_d \to drive$

Example: a conducting loop rotates in an uniform magnetic field with angular frequency ω_d

→ Electromotive Force (emf)

$$\xi = \xi_m \sin(\omega_d t)$$

 ξ_m : amplitude

→ Current if the loop is closed

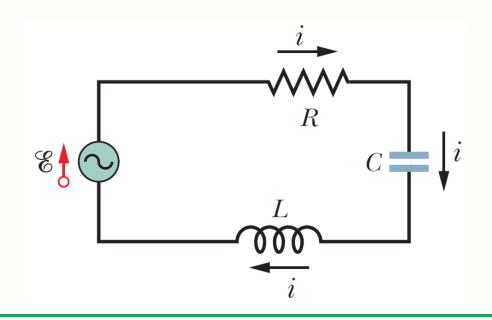
$$i = I \sin(\omega_d t - \phi)$$

I: amplitude, ϕ : phase constant

I and ξ are not always in phase

LC and RLC (with R <<) circuits oscillate at their natural angular frequency $\omega = 1/\sqrt{LC}$

What will happen if we continuously drive this circuits with an external supply operating at ω_d ?



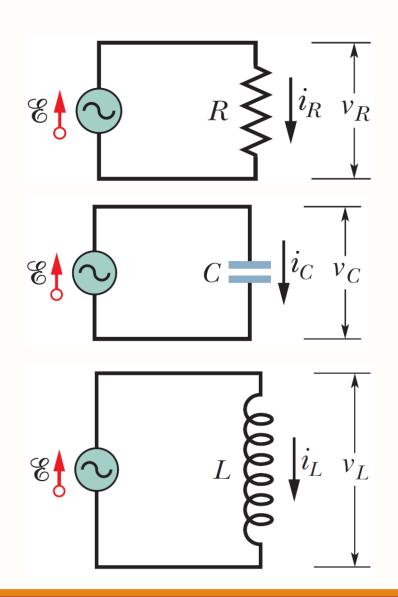
The system will oscillate at ω_d even if its natural frequency is ω .

→ Forced Oscillations

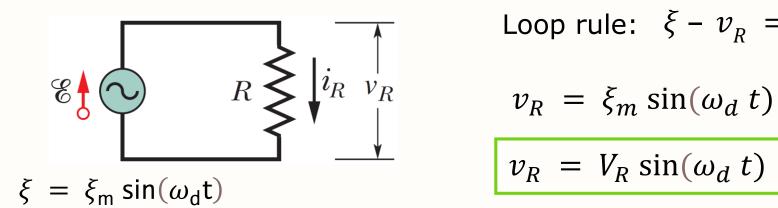
First, simpler circuits than RLC:

- A Resistive Load
- A Capacitive Load
- An Inductive Load

What are the relation between bias and current in these forced circuits ?



Resistive Load



Loop rule:
$$\xi - v_R = 0 \rightarrow v_R = \xi$$

$$v_R = \xi_m \sin(\omega_d t)$$

$$v_R = V_R \sin(\omega_d t)$$

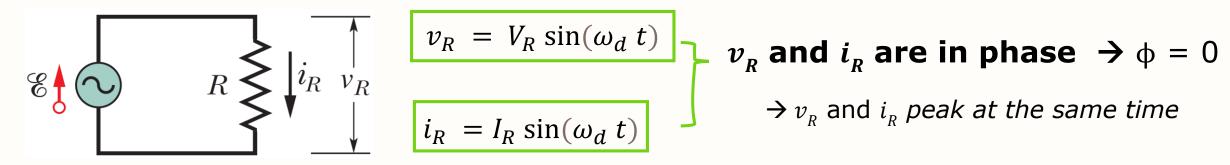
 $v_R = V_R \sin(\omega_d t)$ V_R is the amplitude of v_R equals to ξ_m

Ohm's law:
$$i_R = \frac{v_R}{R} = \frac{V_R}{R} \sin(\omega_d t + 0)$$

General expression of I: $i_R = I_R \sin(\omega_d t - \phi)$ I_R is the amplitude of I_R

By identification:
$$I_R = V_R/R$$
 and $\phi = 0 \rightarrow I_R = I_R \sin(\omega_d t)$ and $V_R = R I_R$

Resistive Load



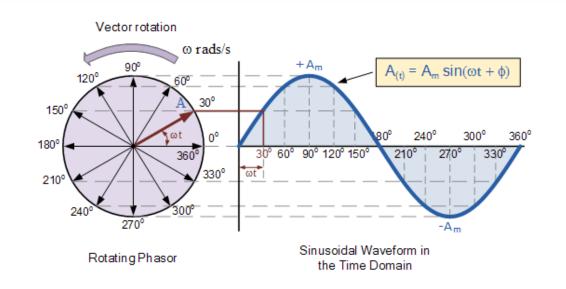
Representation with time traces and phasors:

Reminder

What the HECK is a Phasor? Alternating Current Explained.

https://youtu.be/7weMCsff0xw

Representation with time traces and phasors:



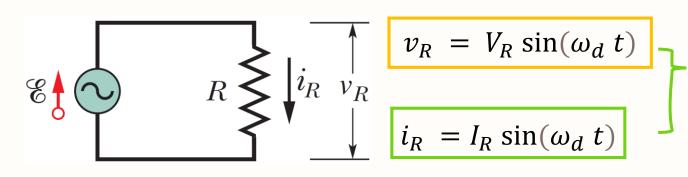
Vertical projection of the vectors gives the value

Length is the amplitude

Angle is the **phase** at time t

Angular speed is **angular frequency**

Resistive Load

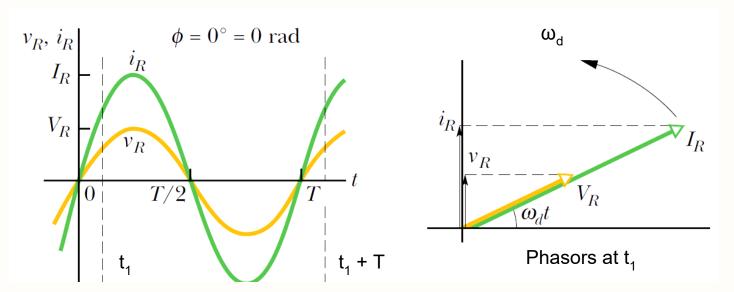


v_R and i_R are in phase $\rightarrow \varphi = 0$

 $\rightarrow v_R$ and i_R peak at the same time in the time trace

$$\Rightarrow \varphi = (\overrightarrow{V_R}, \overrightarrow{I_R}) = 0$$
 in phasor

Representation with time traces and phasors:



Vertical projection of the vectors gives the value

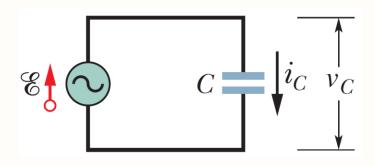
Length is the amplitude

$$V_R = R I_R$$

Angle is the phase ω_d t

Angular speed is ω_d

Capacitive Load



$$\xi = \xi_{\rm m} \sin(\omega_{\rm d} t)$$

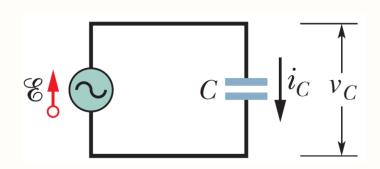
Loop rule:
$$\xi - v_C = 0 \rightarrow v_C = \xi$$

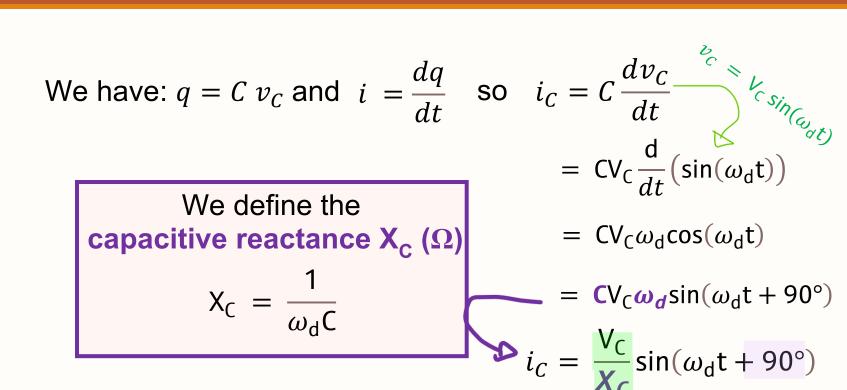
$$v_C = \xi_{\rm m} \sin(\omega_{\rm d} t)$$

$$v_C = V_C \sin(\omega_d t)$$

 V_C is the amplitude of v_C equals to ξ_m

Capacitive Load

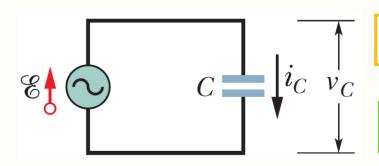




By identification with :
$$i_C = I_C \sin(\omega_d t - \phi)$$

$$I_C = V_C/X_C$$
 and $\phi = -90^\circ$ \rightarrow $I_C = I_C \sin(\omega_d \ t + 90^\circ)$ I_C is the amplitude of I_C and $I_C = I_C \sin(\omega_d \ t + 90^\circ)$ Note: the second relation resemble to $I_C = I_C \sin(\omega_d \ t + 90^\circ)$ $I_C = I_C \sin(\omega_d \ t + 90^\circ)$ and $I_C = I_C \sin(\omega_d \ t + 90^\circ)$ $I_C = I_C \sin(\omega_d \ t + 90^\circ)$ and $I_C = I_C \sin($

Capacitive Load



$$v_C = V_C \sin(\omega_d t)$$

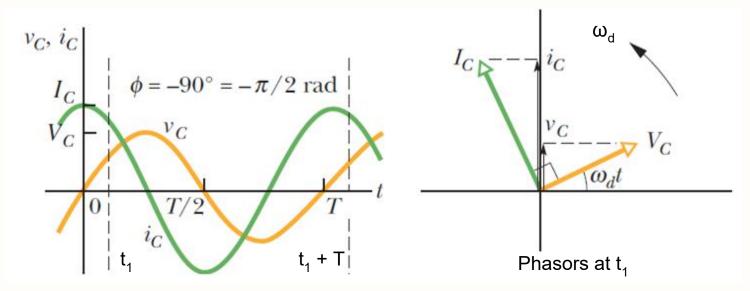
$$i_C = I_C \sin(\omega_d t + 90^\circ)$$

 v_c and i_c are one quarter of cycle out of phase $\rightarrow \varphi = -90^{\circ}$

 $\rightarrow i_{\rm C}$ leads $v_{\rm C}$ by 90° (it peaks first in time trace)

Representation with time traces and phasors:

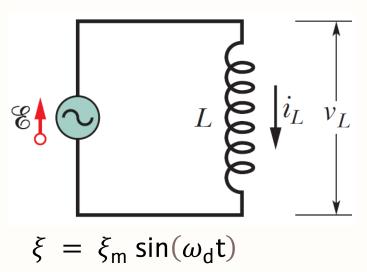
$$\Rightarrow \varphi = (\overrightarrow{V_C}, \overrightarrow{I_C}) = -90^\circ = -\frac{\pi}{2} \text{ rad in phasor}$$



$$V_C = X_c I_C$$

Note: the relation resemble to $V_R = R IR$, but here X_C depends of ω_d

Inductive Load



Loop rule:
$$\xi - v_L = 0 \rightarrow v_L = \xi$$

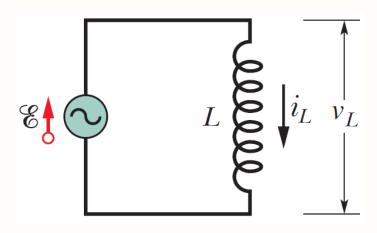
$$v_L = \xi_m \sin(\omega_d t)$$

$$v_L = V_L \sin(\omega_d t)$$

 V_L is the amplitude of v_L equals to ξ_m

FORCED OSCILLATIONS IN THREE SIMPLE CIRCUITS

Inductive Load



We have:
$$v_L = L \frac{di_L}{dt}$$
 so $\int \frac{di_L}{dt} = \frac{v_L}{L} = \frac{V_L}{L} sin(\omega_d t)$

Integrating the expression: $i_L = \int \frac{V_L}{L} sin(\omega_d t) dt$

$$= -\frac{V_L}{\omega_d L} \cos(\omega_d t)$$

We define the inductive reactance X_L (Ω) $X_L = \omega_d L$

$$X_L = \omega_d L$$

$$= \frac{V_L}{\omega_d L} \sin(\omega_d t - 90^\circ)$$

$$i_L = \frac{V_L}{X_L} \sin(\omega_d t - 90^\circ)$$

By identification with: $i_L = I_L \sin(\omega_d t - \phi)$

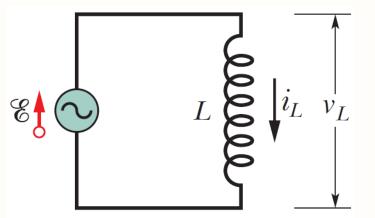
$$I_L = V_L/X_L$$
 and $\phi = +90^{\circ} \rightarrow I_L = I_L \sin(\omega_d t - 90^{\circ})$ and $V_L = X_L I_L$

$$V_L = X_L I_L$$

I_L is the amplitude of i_L

FORCED OSCILLATIONS IN THREE SIMPLE CIRCUITS

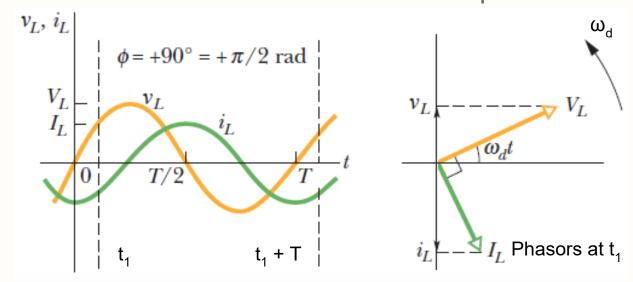
Inductive Load



$$v_L = V_L \sin(\omega_d t)$$

$$i_L = I_L \sin(\omega_d t - 90^\circ)$$

Representation with time traces and phasors:



 v_L and i_L are one quarter of cycle out of phase $\rightarrow \phi = +90^{\circ}$

- $\rightarrow i_L$ lags v_L by 90° (it peaks after)
- $\Rightarrow \varphi = (\overrightarrow{V_L}, \overrightarrow{I_L}) = 90^\circ = \frac{\pi}{2} rad$ in phasor

$$V_L = X_L I_L$$

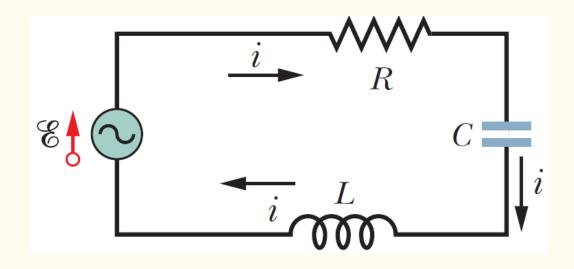
RLC (with R <<) circuit forced at ω_d by an external supply of energy

$$\xi = \xi_m \sin(\omega_d t)$$

Components in series

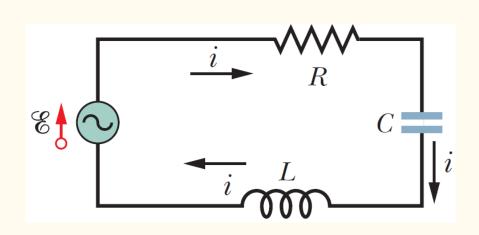
$$I_R = IC = i_L = I = I\sin(\omega_d t - \phi)$$

Dependence of I and ϕ with ω_d ?



The system will oscillate at ω_d even if its natural frequency is ω .

→ Forced Oscillations

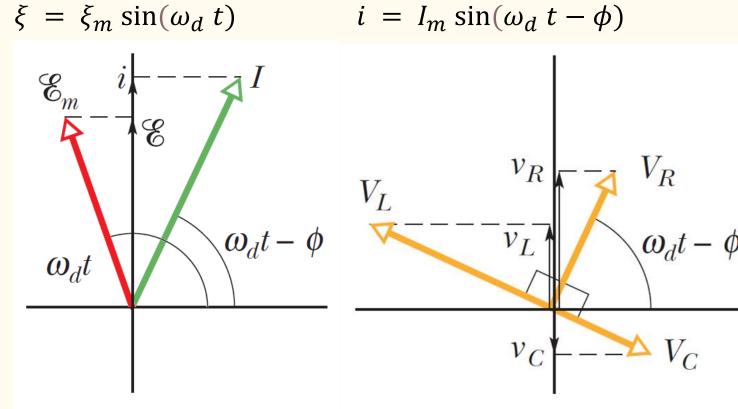


From the previous part, we know that:

- i is in phase with v_{R}
- i leads v_c by 90°
- i lags v_L by 90°
- → Representation with phasors

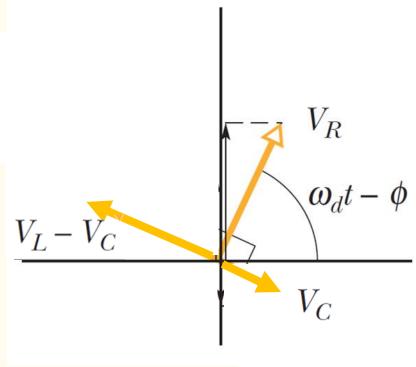
Loop rule: $\xi = v_R + v_C + v_L$

General expressions of ξ and i :



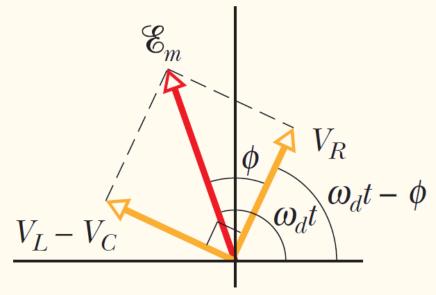
Geometrical resolution:

We redraw the phasors as follows and sum the phasors of $v_L \otimes v_C$ to simplify:



Geometrical resolution:

We redraw the phasors as follows and sum the phasors of $v_L \ \& \ v_C$ to simplify:



To satisfy the loop rule, the sum of the vertical projections of the phasors v_R , v_L and v_C must **always equals** the projection of the phasor of ξ

 \rightarrow To verify this, the **vector sum** of the phasors must equals the phasor ξ

Applying the Pythagorean theorem, we have:

$$\xi_m^2 = V_R^2 + (V_L - V_C)^2$$

$${\xi_m}^2=V_R^2+(V_L-V_C)^2$$
 can be written as ${\xi_m}^2=(IR)^2+(IX_L-IX_C)^2$ (We still have $V_R=IR$, $V_C=IX_C$ and $V_L=IX_L$) That leads to; $I=\frac{\xi_m}{\sqrt{R^2+(X_L-X_C)^2}}=\frac{\xi_m}{Z}$

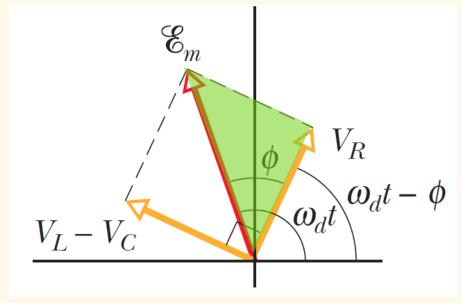
Z is the **impedance** of the circuit

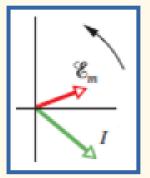
Detailing all the terms, we have:

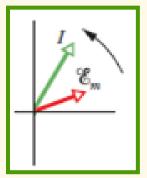
$$I = \frac{\xi_m}{\sqrt{R^2 + \left(\omega_d L - \frac{1}{\omega_d C}\right)^2}}$$

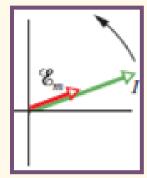
Note: this expression holds for steady-state current after some time already passed

Now, we only need an expression for the phase constant









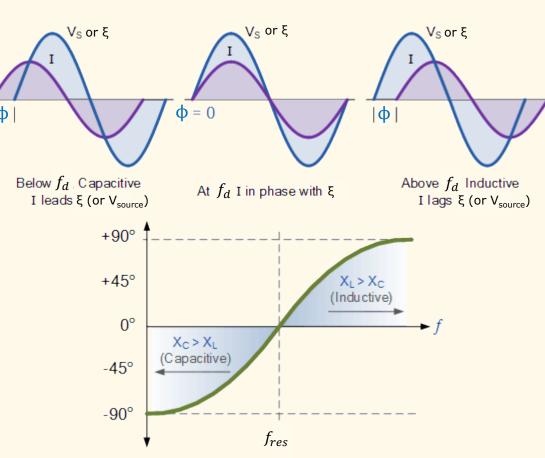
$$\tan(\phi) = \frac{V_L - V_C}{V_R} = \frac{IX_L - IX_C}{IR} = \frac{X_L - X_C}{R}$$

- If X_L – X_C > 0, then, tan (ϕ) > 0, so, 0< ϕ <90° System more inductive than capacitive at ω_d \rightarrow i rotates behind of ξ

- If X_L – X_C < 0, then, tan (ϕ) < 0, so, -90< ϕ <0° System more capacitive than inductive at ω_d \rightarrow i rotates ahead of ξ

- If $X_L - X_C = 0$, then, $tan (\phi) = 0$, so, $\phi = 0^\circ$ **System in resonance at \omega_d** \rightarrow Phasors rotate together

Now, we only need an expression for the phase constant



$$\tan(\phi) = \frac{V_L - V_C}{V_R} = \frac{IX_L - IX_C}{IR} = \frac{X_L - X_C}{R}$$

- If X_L – X_C > 0, then, tan (φ) > 0, so, 0< φ <90° System more inductive than capacitive at ω_d \rightarrow i rotates behind of ξ

- If $X_L - X_C < 0$, then, tan $(\phi) < 0$, so, -90< ϕ <0° System more capacitive than inductive at ω_d \rightarrow i rotates ahead of ξ

- If $X_L - X_C = 0$, then, $tan (\phi) = 0$, so, $\phi = 0^\circ$ **System in resonance at \omega_d** \rightarrow Phasors rotate together

At resonance:
$$X_L - X_C = 0$$

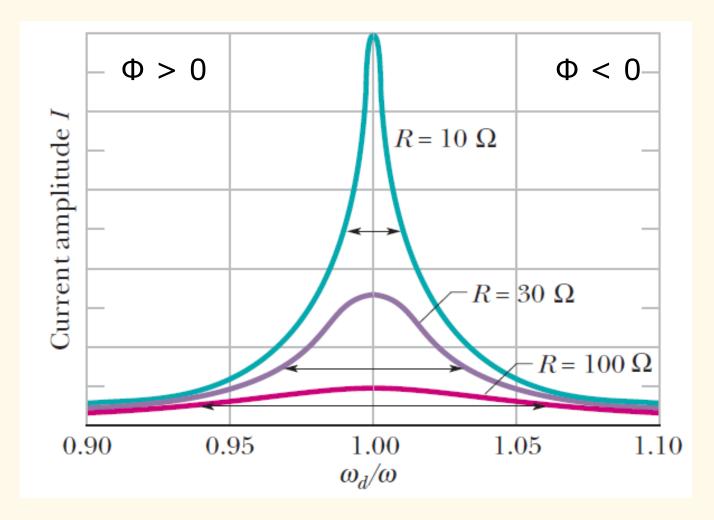
$$L\omega_{\rm d} = \frac{1}{C\omega_{\rm d}}$$

$$\omega_{\rm d}^2 = \frac{1}{LC}$$

$$\omega_{\mathsf{d}} = \frac{1}{\sqrt{LC}}$$

$$\omega_{\mathsf{d}} = \omega$$

Resonance occurs when the driving frequency equals the natural frequency

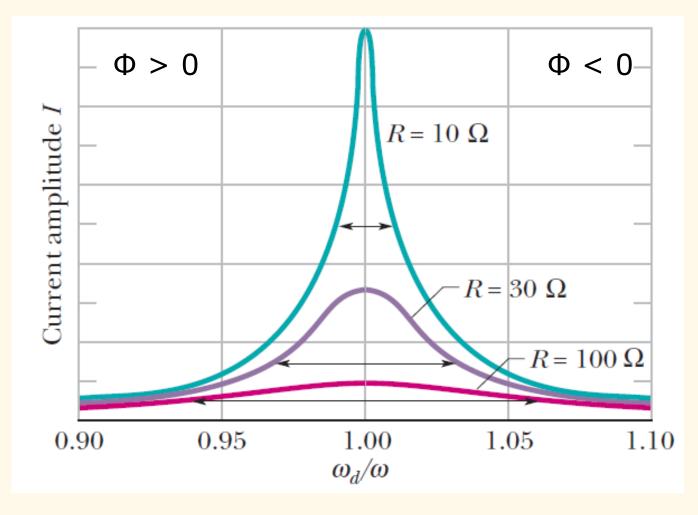


$$L = 100 \mu H, C = 100 pF$$

$$I = \frac{\xi_m}{\sqrt{R^2 + \left(\omega_d L - \frac{1}{\omega_d C}\right)^2}}$$

The lower is R, the sharpest is the resonance

$$\omega = \frac{1}{\sqrt{LC}}$$

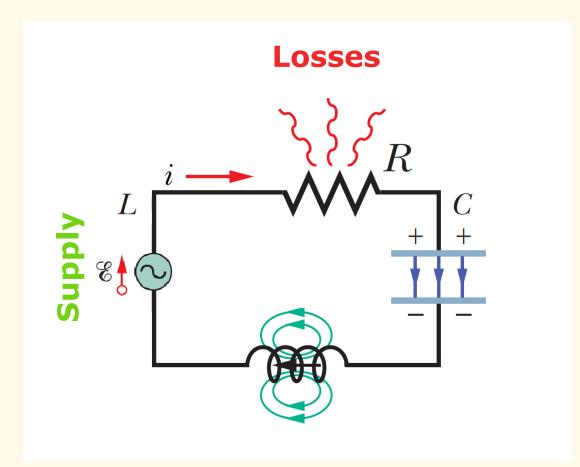


$$L = 100 \mu H, C = 100 pF$$

We consider an RLC circuit forced by an external emf at $\omega_{\scriptscriptstyle d}$

Some energy is stored in B, some in E, some is dissipated by R, some is provided by emf

In the steady-state the average amount of energy in the system is constant



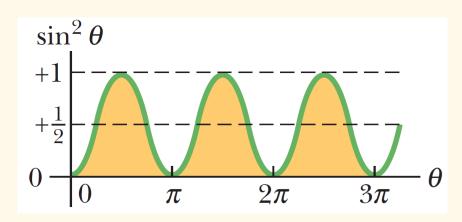
Instantaneous dissipated power in the resistor

$$P = i^2 R = I^2 R \sin^2(\omega_d t - \phi)$$

Average dissipated power

$$P_{avg} = \left(\frac{I}{\sqrt{2}}\right)^2 R = I_{rms}^2 R$$

 I_{rms} is the **root-mean-square** value of I



Note: the average value of $sin^2(\theta)$ is 1/2

For a pure ac current

$$I_{rms} = \frac{I}{\sqrt{2}}$$

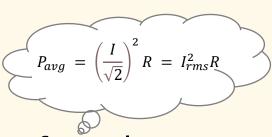
For pure ac emf and voltage, we also have

$$\xi_{rms} = \frac{\xi_m}{\sqrt{2}}$$

$$V_{rms} = \frac{V}{\sqrt{2}}$$

Note: a pure ac signal is a sinus (or cosinus) without offset (dc component)

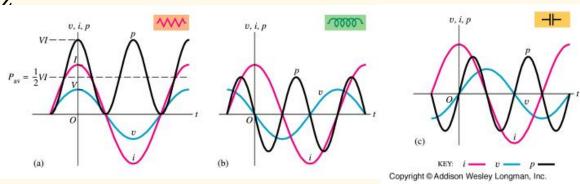
Therefore, we can write:
$$I_{rms} = \frac{\xi_{rms}}{Z}$$



And P_{avg} becomes, when replacing one I_{rms} by the last formula:

$$P_{avg} = \left(\frac{\xi_{rms}}{Z}\right) I_{rms} R = \left(\frac{R}{Z}\right) I_{rms} \xi_{rms}$$
 with $\frac{R}{Z} = \cos \phi$ (demonstrated using $\tan \phi$ in Z)

$$P_{avg} = \cos \phi I_{rms} \xi_{rms}$$
Power factor



To maximize the energy transfer rate, ϕ must be close to 0

ightarrow At the resonance energy transfer is maximized

Note on the rms values:

When we measure a voltage or a current with a multimeter there is 2 modes e.g. = V and ~ V for voltages

The ~ V mode indicates the rms value of the ac component of the signal

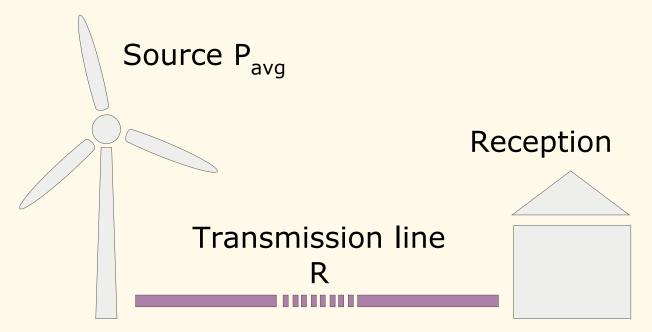
→ Correspond to the the rms value for pure ac signals

$$V_{rms} = \frac{V}{\sqrt{2}}$$
 Amplitude / $\sqrt{2}$

The **= V** mode is the **average voltage**→ 0 for a pure ac signal

Usually, we directly report rms values for alternating currents / voltages

Images: rs-online.com



Note: in the following slides we do not write rms and assume that all the values are rms of pure ac signals

→ This is what is measured

Considering the situation where we need to transmit energy in a power line

 \rightarrow R of the line \neq 0

$$P_{avg} = \xi_{rms} I_{rms} = V_{rms} I_{rms}$$

Power losses: R Irms²

- → Must be reduced
- \rightarrow To transmit energy, for a given P_{avg}

$$V_{rms} >>$$
 and $I_{rms} <<$

V >> and I <<

Problem: High bias are dangerous in domestic installations → Mismatch

Need to have low voltage at the end of the transmission

High V transmission Low V consumption Keep P=VI constant

Need to transform I and V? Transformer

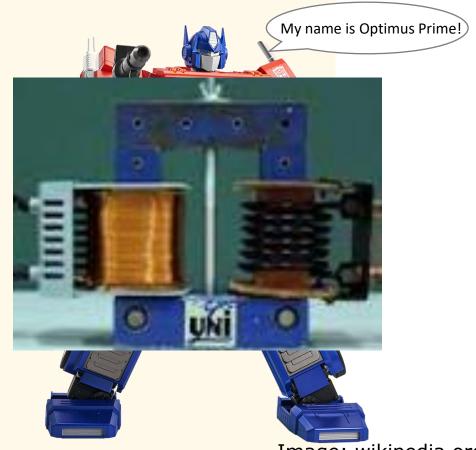


Image: wikipedia.org

The ideal transformer

Primary coil N_D turns

Secondary coil N_s turns

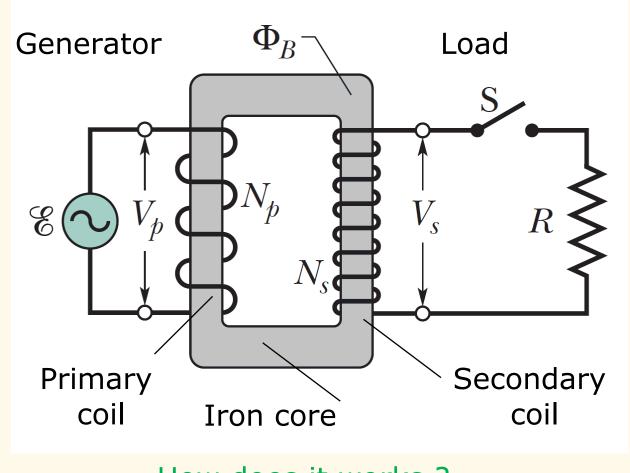
Iron magnetic core

Switch S open or closed

Resistive load R

Note: The load is simply resistive

here for simplification.



How does it works?

The transformer receive an emf

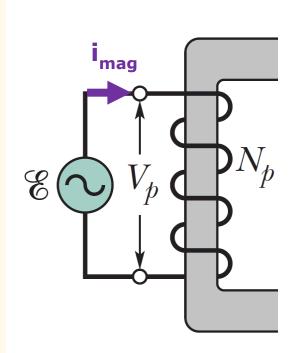
$$\xi = \xi_{\rm m} \sin(\omega_{\rm d} t)$$

The small current in the primary coil is called **magnetizing current** i_{mag}

$$i_{mag} = I_{mag} \sin(\omega_d t - 90^\circ)$$
 currindu $\phi = 90^\circ$ $\cos(\phi) = 0$

current for pure inductive load

The power factor is 0 → no transmitted power



The transformer receive an emf

$$\xi = \xi_{\rm m} \sin(\omega_{\rm d} t)$$

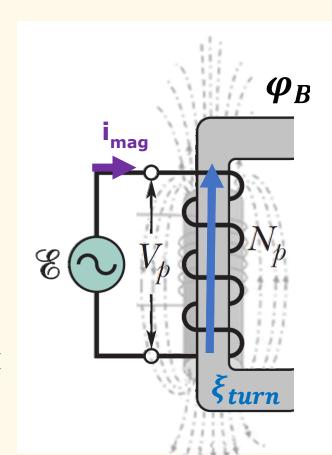
The small current in the secondary coil is called **magnetizing current** i_{mag}

 $\boldsymbol{I}_{\text{mag}}$ produces a sinusoidally varying magnetic field

 \rightarrow sinusoidally varying magnetic flux ϕ_{R} in the iron core

In each turn of the coils φ_R produces and emf

$$\xi_{turn} = \frac{d\varphi_B}{dt}$$



Note: no minus sign here to take into account the orientation of the turns with respect to the core

The transformer receive an emf

$$\xi = \xi_{\rm m} \sin(\omega_{\rm d} t)$$

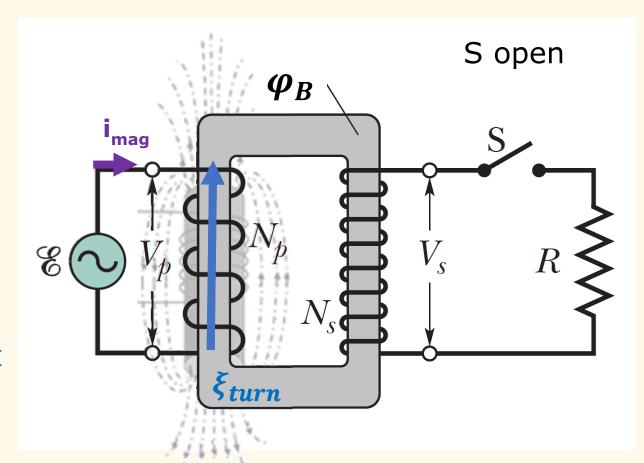
The small current in the secondary coil is called **magnetizing current** i_{mag}

 I_{mag} produces a sinusoidally varying magnetic field

 \rightarrow sinusoidally varying magnetic flux ϕ_R in the iron core

In each turn of the coils φ_B produces and emf

$$\xi_{turn} = \frac{\mathsf{d}\varphi_B}{dt}$$



Note: no minus sign here to take into account the orientation of the turns with respect to the core

The transformer receive an emf

$$\xi = \xi_{\rm m} \sin(\omega_{\rm d} t)$$

In each turn of the coils φ_R produces and emf

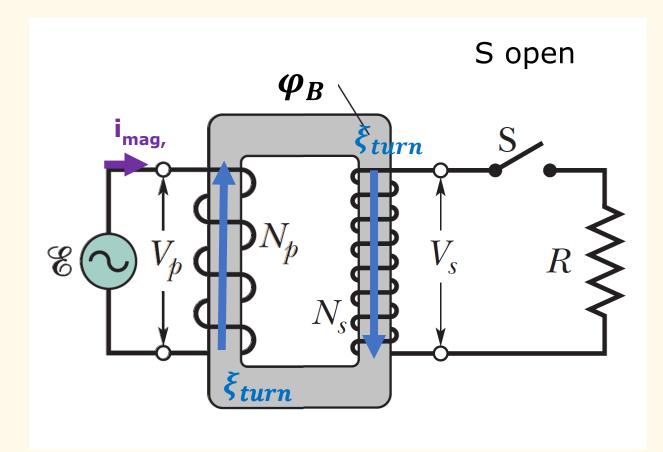
$$\xi_{turn} = \frac{d\phi_{B}}{dt}$$

So we have:

$$V_p = N_p \xi_{turn}$$

$$V_s = N_s \xi_{turn}$$

$$V_s = V_p \frac{N_s}{N_p}$$



Transformation of voltage

 $N_s > N_p \rightarrow V_s > V_p$: Step-up transformer

 $N_s < N_p \rightarrow V_s < V_p$: Step-down transformer

Still no power is transmitted because S is open (no current in the second coil) → now we close S

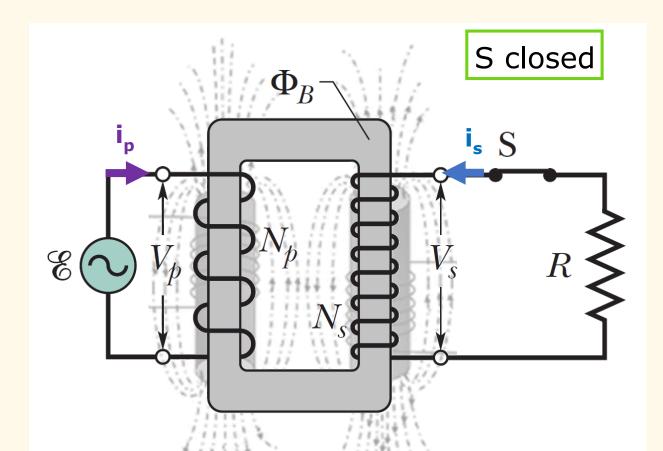
The transformer receive an emf

$$\xi = \xi_{\rm m} \sin(\omega_{\rm d} t)$$

Transformation of voltage $V_s = V_p \frac{N_s}{N_p}$

Current in the secondary circuit: $I_s = \frac{V_s}{R}$

 I_s creates its own varying magnetic flux Opposes to φ_B \to "lowering of V_p "



But V_p is kept at ξ by the generator \rightarrow **Produces a current I_p to maintain V_p**

Power factor of $I_p \neq 0 \rightarrow Power$ is transferred

The transformer receive an emf

$$\xi = \xi_{\rm m} \sin(\omega_{\rm d} t)$$

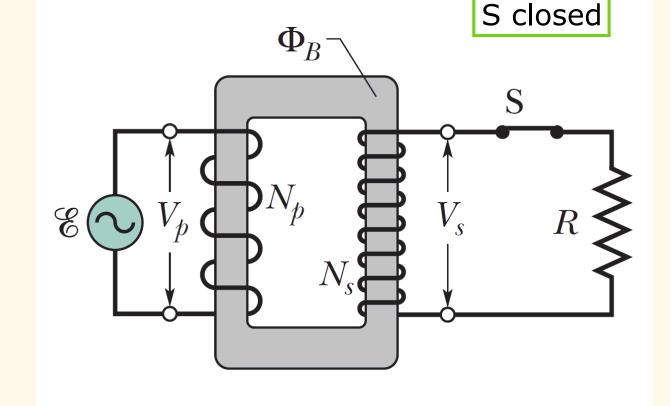
Transformation of voltage $V_s = V_p \frac{N_s}{N_p}$

Current in the secondary circuit: $I_s = \frac{V_s}{R}$

Conservation of energy:

$$I_s V_s = I_p V_p$$

Conservation of energy and transformation of voltage lead to:



$$I_{S} = I_{p} \frac{N_{p}}{N_{S}}$$

Transformation of current

The transformer receive an emf

$$\xi = \xi_{\rm m} \sin(\omega_{\rm d} t)$$

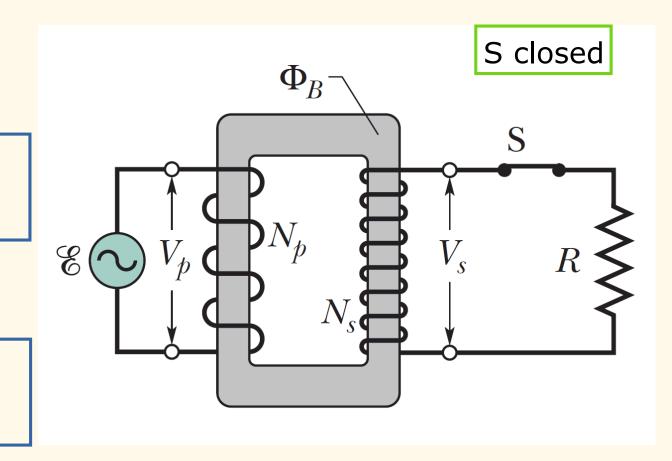
Transformation of voltage

$$V_{s} = V_{p} \frac{N_{s}}{N_{p}}$$

Current in the secondary circuit: $I_s = \frac{V_s}{R}$

Transformation of current

$$I_S = I_p \frac{N_p}{N_S}$$



If
$$V_s < V_p$$
 then $I_s > I_p$

The transformer receive an emf

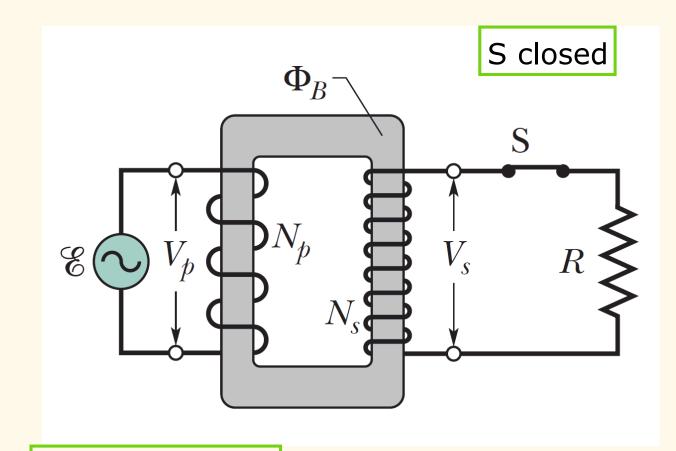
$$\xi = \xi_{\rm m} \sin(\omega_{\rm d} t)$$

Transformation of voltage $V_s = V_p \frac{N_s}{N_p}$

Current in the secondary circuit: $I_s = \frac{V_s}{R}$

Transformation of current $I_s = I_p \frac{N_p}{N_s}$

From these 3 equations we deduce I_p



$$I_p = \frac{1}{R} \left(\frac{N_s}{N_p} \right)^2 V_p$$

Note on impedance matching

$$I_p = \frac{1}{R} \left(\frac{N_s}{N_p} \right)^2 V_p$$
 Equivalent load for the primary circuit $R_{eq} = R \left(\frac{N_p}{N_s} \right)^2$

For efficient power transfer, the small impedance of the emf generator must equals $R_{eq} \rightarrow$ use of step-up transformer

KEY POINTS

Inductors and Capacitors respectively store energy as: $U_B = \frac{Li^2}{2}$ and $U_E = \frac{q^2}{2C}$

LC and RLC (R<<) circuits oscillate freely at their natural angular frequency $\omega = \frac{1}{\sqrt{LC}}$

Oscillations of RLC are damped → Energy loss rate Ri²

Forced oscillations of circuits by an external emf $\xi = \xi_{\rm m} \sin(\omega_{\rm d} t)$

Forced RLC circuits by an external emf at ω_d are at resonance for ω = ω_d

Alternating current can be tuned by transformers $I_s = I_p \frac{N_p}{N_s}$

READING ASSIGNMENT

Chapter 32 of the textbook