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INTRODUCTION – 2nd PART OF THE COURSES

Textbook: Fundamental of Physics, 10th edition, Wiley,
J. Walker, D. Halliday, R. Resnick,

Chapters 31 -36

Content of this class

- Electromagnetic Oscillations & Alternating Current

- Maxwell’s Equations & Magnetism of Matter

- Electromagnetic Waves

- Images

- Interference

- Diffraction
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Textbook: Fundamental of Physics, 10th edition, Wiley,
J. Walker, D. Halliday, R. Resnick,

Chapters 31 -36

INTRODUCTION – 2nd PART OF THE COURSES

This course will essentially follow the textbook

Reading assignments: Have a look at the next 
chapter before the lesson

Note: Expect specified otherwise, all figures in 
this presentations are adapted from the textbook
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INTRODUCTION – 2nd PART OF THE COURSES

Intermediate evaluation (MCQ) + final test
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INTRODUCTION – 2nd PART OF THE COURSES

Before we start

Physics requires to handle some mathematical tools
In this class, we will use accessible tools

→ In the future of your studies, you will learn more advanced tools

→ We will have to admit some results
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- Electromagnetic Oscillations & Alternating Current

- Maxwell’s Equations & Magnetism of Matter

- Electromagnetic Waves

- Images

- Interference

- Diffraction
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ELECTROMAGNETIC OSCILLATIONS & ALTERNATING CURRENT

Textbook: Chapter 31

- LC OSCILLATIONS

- DAMPED OSCILLATIONS IN AN RLC CIRCUIT

- FORCED OSCILLATIONS OF THREE SIMPLE CIRCUITS

- THE SERIES RLC CIRCUIT POWER IN ALTERNATING-
CURRENT CIRCUITS

- TRANSFORMERS

Images: rs-online.com
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LC OSCILLATIONS

ELECTROMAGNETIC OSCILLATIONS & ALTERNATING CURRENT

𝖴𝖤  =
𝗊𝟤

𝟤𝖢

𝖴𝖡  =
𝐿𝑖𝟤

𝟤

Energy stored in the E field of the capacitor

Energy stored in the B field of the inductor

q: Charge stored (C)

C: Capacitance (F)

i: Current (A)

L: Inductance (H)

System: LC with an energy U
distributed between U

E
& U

B

Assuming no losses

What will happen ?
→ Discharge of C in L
→ C completely discharged
→ Charge of C by i

→ C completely charged
→ Discharge of C in L

And so on ...

Note: q is the charge stored on a given plate
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LC OSCILLATIONS

ELECTROMAGNETIC OSCILLATIONS & ALTERNATING CURRENT

U
E max

U
B

= 0

q = +qmax

U
E

= 0    i = -imax

U
B max

U
E

= 0     i = +imax

U
B max
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Energy is stored 

in electric field 𝐸 
of capacitor

Energy is stored in magnetic 

field 𝐵 of inductor

Energy is stored in magnetic 

field 𝐵 of inductor

Energy is 
stored in 

electric field 𝐸 
of capacitor

U
E max

U
B

= 0

q = -qmax



LC OSCILLATIONS

ELECTROMAGNETIC OSCILLATIONS & ALTERNATING CURRENT 10

https://youtu.be/2_y_3_3V-so
http://tinyurl.com/ufbdsz3

Same physics as a mass-spring model !!!

https://youtu.be/2_y_3_3V-so
http://tinyurl.com/ufbdsz3


LC OSCILLATIONS

ELECTROMAGNETIC OSCILLATIONS & ALTERNATING CURRENT

System: LC with an energy U
distributed between U

E
& U

B

Assuming no losses

What will happen ?
→ Discharge of C in L
→ C completely discharged
→ Charge of C by i

→ C completely charged
→ Discharge of C in L

And so on ...U
E

and U
B

vary during time but the total

amount of energy is constant

Q: Max. charge stored (C)
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LC OSCILLATIONS

ELECTROMAGNETIC OSCILLATIONS & ALTERNATING CURRENT

𝖴 =  𝖴𝖡  +  𝖴𝖤 

𝖴 =
𝐿𝑖𝟤

𝟤
 +

𝗊𝟤

𝟤𝖢
Given that U is constant through time:

Analytical resolution:

𝖽

𝑑𝑥
𝗒 𝗑

𝟤  =  𝟤𝗒 𝗑

𝖽

𝑑𝑥
𝗒 𝗑
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𝑑𝑈

𝑑𝑡
 =  𝟢 

𝖽

𝑑𝑡

𝐿𝑖𝟤

𝟤
 +

𝗊𝟤

𝟤𝖢
 =  𝟢 

𝖫

𝟤

𝖽

𝑑𝑡
𝗂𝟤  +

𝟣

𝟤𝖢

𝖽

𝑑𝑡
𝗊𝟤  =  𝟢

𝐿𝑖
𝑑𝑖

𝑑𝑡
 +

𝟣

𝖢
𝗊

𝑑𝑞

𝑑𝑡
 =  𝟢 



𝖫
𝑑𝑞

𝑑𝑡

𝖽𝟤𝗊

𝑑𝑡𝟤
 +

𝟣

𝖢
𝗊

𝑑𝑞

𝑑𝑡
 =  𝟢
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LC OSCILLATIONS

ELECTROMAGNETIC OSCILLATIONS & ALTERNATING CURRENT

𝐿𝑖
𝑑𝑖

𝑑𝑡
 +

𝟣

𝖢
𝗊

𝑑𝑞

𝑑𝑡
 =  𝟢 𝗂 =

𝑑𝑞

𝑑𝑡
However, , so,

𝑑𝑖

𝑑𝑡
 =

𝖽𝟤𝗊

𝑑𝑡𝟤

So we have:

The differential equation for the charge

in an LC circuit without resistance

Solution: 𝗊 𝗍  =  𝖰 𝖼𝗈𝗌 𝜔𝗍 + 𝜙
Q: the maximum charge

ω: the natural angular frequency

ϕ: a phase constant

𝜔 =
𝟣

𝐿𝐶
with

𝖫
𝖽𝟤𝗊

𝑑𝑡𝟤
 +

𝗊

𝖢
 =  𝟢 



𝖴𝖡(t)  =
𝐿𝑖(𝑡)𝟤

𝟤
=

𝐿
𝑑𝑞 𝑡

𝑑𝑡

𝟤

𝟤

LC OSCILLATIONS

ELECTROMAGNETIC OSCILLATIONS & ALTERNATING CURRENT

but,

and,
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𝖴𝖤(t)  =
𝗊(t)𝟤

𝟤𝖢𝗊 𝗍  =  𝖰 𝖼𝗈𝗌 𝜔𝗍 + 𝜙𝗊 𝗍  =  𝖰 𝖼𝗈𝗌 𝜔𝗍 + 𝜙𝗊 𝗍  =  𝖰 𝖼𝗈𝗌 𝜔𝗍 + 𝜙



LC OSCILLATIONS

ELECTROMAGNETIC OSCILLATIONS & ALTERNATING CURRENT

𝗊 𝗍  =  𝖰 𝖼𝗈𝗌 𝜔𝗍 + 𝜙
𝖴𝖤 𝗍  =

𝖰𝟤

𝟤𝖢
 𝖼𝗈𝗌𝟤 𝜔𝗍 + 𝜙

𝖴𝖡 𝗍  =
𝖰𝟤

𝟤𝖢
 𝗌𝗂𝗇𝟤 𝜔𝗍 + 𝜙

so,

and,

Periodic solutions that verify that 𝖴 =  𝖴𝖡 𝗍  +  𝖴𝖤 𝗍  is constant and equals
𝖰𝟤

𝟤𝖢

Remarks: When U
E

= Q²/(2C) is max., U
B

is zero, and conversely
The potential difference across C, V

C
= q/C is also periodic

When q
(t)

= + or - Q, i
(t)

is zero

When I
(t)

= + or – I, q
(t)

is zero

15

from 𝗶 =
𝑑𝑞

𝑑𝑡
 =  −𝜔𝖰 𝗌𝗂𝗇 𝜔𝗍 + 𝜙  = −𝗜 𝘀𝗶𝗻 𝝎𝘁 + 𝝓

I = -ωQ is the 
max. current

𝗜 𝘀𝗶𝗻 𝝎𝘁 − 𝝓



LC OSCILLATIONS

ELECTROMAGNETIC OSCILLATIONS & ALTERNATING CURRENT 16

The period T is 
1

𝑓
=

1

𝜔/2𝜋
= 2𝜋 𝐿𝐶

System: LC with an energy U
distributed between U

E
& U

B

Assuming no losses

We demonstrated that U
E

& U
B

oscillate periodically

The natural angular frequency

ω equals

frequency (Hz or s-1) angular frequency (rad.s-1)



LC OSCILLATIONS

ELECTROMAGNETIC OSCILLATIONS & ALTERNATING CURRENT

System: LC with an energy U
distributed between U

E
& U

B

Assuming no losses

We demonstrated that U
E

& U
B

oscillate periodically

The natural angular frequency

ω equals

17

note that T is relative to q and i



LC OSCILLATIONS

ELECTROMAGNETIC OSCILLATIONS & ALTERNATING CURRENT 18

So far we assumed all components 
had no resistance

→ no loss of energy by thermal
dissipation

What will happen with losses ?

System: LC with an energy U
distributed between U

E
& U

B

Assuming no losses

We demonstrated that U
E

& U
B

oscillate periodically

The natural angular frequency

ω equals 



DAMPED  OSCILLATIONS IN  AN  RLC CIRCUIT

ELECTROMAGNETIC OSCILLATIONS & ALTERNATING CURRENT

System: RLC with an energy U 
distributed between U

E
& U

B

Loss of energy with R

Rate of energy dissipation
→ i²R

R: resistance of the resistor (Ω)

19

𝖴𝖤  =
𝗊𝟤

𝟤𝖢

𝖴𝖡  =
𝐿𝑖𝟤

𝟤

Energy stored in the E field of the capacitor

Energy stored in the B field of the inductor

q: Charge stored (C)

C: Capacitance (F)

i: Current (A)

L: Inductance (H)



DAMPED  OSCILLATIONS IN  AN  RLC CIRCUIT

ELECTROMAGNETIC OSCILLATIONS & ALTERNATING CURRENT

System: RLC with an energy U 
distributed between U

E
& U

B

Loss of energy with R
What will happen ?
→ Discharge of C in L
→ C completely discharged
→ Charge of C by i

→ C completely charged
→ Discharge of C in L

And so on … until it stops
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Measurement of VC in an RLC circuit

The system oscillates but the amplitude

decreases over time

U (t)

UE(t)

Time (s)

En
er

gy Losses over time→ 𝑅𝑖²(𝑡)

UB(t)



DAMPED  OSCILLATIONS IN  AN  RLC CIRCUIT

ELECTROMAGNETIC OSCILLATIONS & ALTERNATING CURRENT

But now U is no more constant through time:

Analytical resolution:

𝑑𝑈

𝑑𝑡
=  −𝑅𝑖2
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This is still true for RLC

minus sign because

we loose energy

Following the same route 

than for LC, we have: 𝐿𝑖
𝑑𝑖

𝑑𝑡
 +

𝗊

𝖢

𝑑𝑞

𝑑𝑡
 =  −𝑅𝑖𝟤 𝐿𝑖

𝑑𝑖

𝑑𝑡
 +

𝗊

𝖢

𝑑𝑞

𝑑𝑡
 + 𝑅𝑖𝟤  =  𝟢or

Again, we substitute               and𝗂 =
𝑑𝑞

𝑑𝑡

𝑑𝑖

𝑑𝑡
 =

𝖽𝟤𝗊

𝑑𝑡𝟤

𝖫
𝑑𝑞

𝑑𝑡

𝖽𝟤𝗊

𝑑𝑡𝟤
 +

𝟣

𝖢
𝗊

𝑑𝑞

𝑑𝑡
 +  𝖱

𝑑𝑞

𝑑𝑡

𝟤

 =  𝟢To obtain: or 𝖫
𝖽𝟤𝗊

𝑑𝑡𝟤
 +  𝖱

𝑑𝑞

𝑑𝑡
 +

𝗊

𝖢
 =  𝟢

𝑈 =
𝐿𝑖2

2
 +

𝑞2

2𝐶

𝑈 =  𝑈𝐵  +  𝑈𝐸



DAMPED  OSCILLATIONS IN  AN  RLC CIRCUIT

ELECTROMAGNETIC OSCILLATIONS & ALTERNATING CURRENT 22

𝖫
𝖽𝟤𝗊

𝑑𝑡𝟤
 +  𝖱

𝑑𝑞

𝑑𝑡
 +

𝗊

𝖢
 =  𝟢

The differential equation for the charge decay

in an RLC circuit

𝒒 𝒕  =  𝑸 𝒆
−𝑹𝒕
𝟐𝑳 𝐜𝐨𝐬 𝝎′𝒕 + 𝝓That admits as solution:

𝜔′ = 𝜔2 −
𝑅

2𝐿

2

With: the angular frequency of the damped oscillations,

𝜔 =
𝟣

𝐿𝐶
the natural angular frequency, ϕ a phase constant and Q the max. stored charge



DAMPED  OSCILLATIONS IN  AN  RLC CIRCUIT

ELECTROMAGNETIC OSCILLATIONS & ALTERNATING CURRENT 23

𝜔′ = 𝜔𝟤 −
𝖱

𝟤𝖫

𝟤

 <  𝜔 but for R small, ω’ ≃ ω

Remarks:

𝗊 𝗍  =  𝖰 e
−𝑅𝑡
𝟤𝖫  𝖼𝗈𝗌 𝜔′𝗍 + 𝜙Expression of the charge

Oscillations

Damped Amplitude

We have:

Plot of q(t) for R/2L = 1/100



DAMPED  OSCILLATIONS IN  AN  RLC CIRCUIT

ELECTROMAGNETIC OSCILLATIONS & ALTERNATING CURRENT

System: RLC with an energy U 
distributed between U

E
& U

B

Loss of energy with R

Energy loss can be easily 
calculated for U

E

→ Decay of the electric energy
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𝗊 𝗍  =  𝖰 e
−𝑅𝑡
𝟤𝖫  𝖼𝗈𝗌 𝜔′𝗍 + 𝜙

But,  𝖴𝖤  =
𝗊𝟤

𝟤𝖢

So,  𝖴𝖤 𝗍  =
𝖰𝟤

𝟤𝖢
 e

−𝑅𝑡

𝖫  𝖼𝗈𝗌𝟤 𝜔′𝗍 + 𝜙

Damped Amplitude

Oscillations



FORCED OSCILLATIONS IN THREE SIMPLE CIRCUITS

ELECTROMAGNETIC OSCILLATIONS & ALTERNATING CURRENT

Note on alternative currents:
ac: Alternative Current
→ oscillating

dc: Direct Current
→ nonoscillating

By extension, we also use the 
terms ac and dc for voltages

25

So far, we only considered 
circuits that have been given 
some energy and studied their 
behavior during time

→ Now we will continuously 
supply energy to circuits at a 
given frequency

e.g. supply of an alternative 
current to an RLC circuit  



FORCED OSCILLATIONS IN THREE SIMPLE CIRCUITS

ELECTROMAGNETIC OSCILLATIONS & ALTERNATING CURRENT

Example: a conducting loop 
rotates in an uniform magnetic 
field with angular frequency ω

d

→ Electromotive Force (emf)

ξ
m

: amplitude

→ Current if the loop is closed

I: amplitude, ϕ: phase constant

I and ξ are not always in phase
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𝝃 =  𝝃𝙢 𝘀𝗶𝗻 𝝎𝙙𝙩

𝒊 =  𝑰 sin(𝝎𝒅 𝒕 −  𝝓)
Generates an alternative voltage

that can drive an alternative current

d in ω
d
→ drive

ω
d



FORCED OSCILLATIONS IN THREE SIMPLE CIRCUITS

ELECTROMAGNETIC OSCILLATIONS & ALTERNATING CURRENT 27

LC and RLC (with R <<) circuits
oscillate at their natural 
angular frequency  

What will happen if we 
continuously drive this circuits 

with an external supply 
operating at ω

d
?

𝝎 =  Τ𝟭 𝑳𝑪

The system will oscillate at ωd even if

its natural frequency is ω.

→ Forced Oscillations



FORCED OSCILLATIONS IN THREE SIMPLE CIRCUITS

ELECTROMAGNETIC OSCILLATIONS & ALTERNATING CURRENT 28

First, simpler circuits than RLC:

- A Resistive Load

- A Capacitive Load

- An Inductive Load

What are the relation between 
bias and current in these forced 

circuits ?



FORCED OSCILLATIONS IN THREE SIMPLE CIRCUITS

ELECTROMAGNETIC OSCILLATIONS & ALTERNATING CURRENT 29

Resistive Load

𝜉 =  𝜉𝗆 𝗌𝗂𝗇 𝜔𝖽𝗍

𝑣𝑅  =  𝜉𝑚 sin(𝜔𝑑 𝑡)

Loop rule:

V
R

is the amplitude of 𝑣𝑅 equals to ξ
m

Ohm’s law: 𝑖𝑅  =
𝑣𝑅

𝑅
 =

𝑉𝑅

𝑅
 sin(𝜔𝑑  𝑡)

I
R

is the amplitude of i
RGeneral expression of I: 𝑖𝑅  = 𝐼𝑅  sin(𝜔𝑑  𝑡 − 𝜙)

By identification: 𝐼𝑅 = 𝑉𝑅/𝑅 and ϕ = 0  →   𝑖𝑅  = 𝐼𝑅  sin(𝜔𝑑  𝑡)

𝑣𝑅  =  𝑉𝑅 sin(𝜔𝑑 𝑡)

𝜉 – 𝑣𝑅 = 0 → 𝑣𝑅 = 𝜉

𝑉𝑅 = 𝑅 𝐼𝑅and

+0)



FORCED OSCILLATIONS IN THREE SIMPLE CIRCUITS

ELECTROMAGNETIC OSCILLATIONS & ALTERNATING CURRENT 30

𝑖𝑅  = 𝐼𝑅  sin(𝜔𝑑  𝑡)

𝑣𝑅  =  𝑉𝑅  sin(𝜔𝑑  𝑡)
𝒗𝑹 and 𝒊𝑹 are in phase  → ϕ = 0

       → 𝑣𝑅 and 𝑖𝑅 peak at the same time

Representation with time traces and phasors :

Resistive Load



FORCED OSCILLATIONS IN THREE SIMPLE CIRCUITS

ELECTROMAGNETIC OSCILLATIONS & ALTERNATING CURRENT 31

Representation with time traces and phasors :

time traces phasors

A(t)

t

Vertical projection of the vectors

gives the value

Length is the amplitude

Angle is the phase at time t

Angular speed is angular frequency

Reminder

𝜔

A(t)

https://youtu.be/7weMCsff0xw 

https://youtu.be/7weMCsff0xw


FORCED OSCILLATIONS IN THREE SIMPLE CIRCUITS

ELECTROMAGNETIC OSCILLATIONS & ALTERNATING CURRENT 32

𝑖𝑅  = 𝐼𝑅  sin(𝜔𝑑  𝑡)

𝑣𝑅  =  𝑉𝑅  sin(𝜔𝑑  𝑡)

t
1

t
1

+ T Phasors at t
1

ω
d Vertical projection of the vectors

gives the value

Length is the amplitude

Angle is the phase ωd t

Angular speed is  ωd

𝑉𝑅 = 𝑅 𝐼𝑅

Representation with time traces and phasors :

Resistive Load

𝒗𝑹 and 𝒊𝑹 are in phase  → ϕ = 0

→ 𝑣𝑅 and 𝑖𝑅 peak at the same time in the time trace

→ ϕ = 𝑉𝑅 , 𝐼𝑅 = 0 in phasor 



FORCED OSCILLATIONS IN THREE SIMPLE CIRCUITS
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Capacitive Load

𝜉 =  𝜉𝗆 𝗌𝗂𝗇 𝜔𝖽𝗍

𝑣𝐶  =  𝜉𝗆 𝗌𝗂𝗇 𝜔𝖽𝗍

Loop rule:  𝜉 – 𝑣𝐶 = 0 → 𝑣𝐶 = 𝜉

𝑣𝐶  =  𝖵𝖢 𝗌𝗂𝗇 𝜔𝖽𝗍 V
C

is the amplitude of 𝑣𝐶 equals to ξ
m



Capacitive Load

FORCED OSCILLATIONS IN THREE SIMPLE CIRCUITS

ELECTROMAGNETIC OSCILLATIONS & ALTERNATING CURRENT 34

We have: 𝑞 = 𝐶 𝑣𝐶 and

 

𝑖 =
𝑑𝑞

𝑑𝑡

We define the 
capacitive reactance X

C
(Ω)

𝖷𝖢  =
𝟣

𝜔𝖽𝖢

𝑖𝐶 =
𝖵𝖢

𝙓𝘾
𝗌𝗂𝗇 𝜔𝖽𝗍 + 𝟫𝟢°

so 𝑖𝐶 = 𝐶
𝑑𝑣𝐶

𝑑𝑡

=  𝖢𝖵𝖢

𝖽

𝑑𝑡
𝗌𝗂𝗇 𝜔𝖽𝗍

=  𝖢𝖵𝖢𝜔𝖽𝖼𝗈𝗌 𝜔𝖽𝗍

=  𝗖𝖵𝖢𝝎𝙙𝗌𝗂𝗇 𝜔𝖽𝗍 + 𝟫𝟢°

IC is the amplitude of iC

By identification with : 𝑖𝐶  = 𝐼𝐶  sin(𝜔𝑑  𝑡 − 𝜙)

𝐼𝐶 = 𝑉𝐶/𝑋𝐶 and ϕ = -90° → 𝑖𝐶  = 𝐼𝐶  sin(𝜔𝑑  𝑡 + 90°)

𝑉𝐶 = 𝑋𝐶 𝐼𝐶
Note: the second relation resemble to 

𝑉𝑅 = 𝑅 𝐼𝑅, but here X
C

depends of ω
d

and



Capacitive Load

FORCED OSCILLATIONS IN THREE SIMPLE CIRCUITS
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𝑣𝐶  =  𝑉𝐶  sin(𝜔𝑑  𝑡)

𝑖𝐶  = 𝐼𝐶  sin(𝜔𝑑  𝑡 + 90°)

𝒗𝑪 and 𝒊𝑪 are one quarter 

of cycle out of phase → ϕ = -90°

→ 𝑖𝐶 leads 𝑣𝐶 by 90° (it peaks first in time trace)

→ ϕ = 𝑉𝐶 , 𝐼𝐶 = −90° = −
𝜋

2
 rad in phasor 

t
1

t
1

+ T Phasors at t
1

ω
d

V
C

= X
c

I
C

Representation with time traces and phasors :

Note: the relation resemble to 𝑉𝑅 = 𝑅 𝐼𝑅, 

but here X
C

depends of ω
d
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𝜉 =  𝜉𝗆 𝗌𝗂𝗇 𝜔𝖽𝗍

𝑣𝐿  =  𝜉𝑚 sin(𝜔𝑑  𝑡)

Loop rule: 𝝃 – 𝒗𝑳 = 𝟎 → 𝒗𝑳 = 𝝃

𝑉𝐿 is the amplitude of 𝑣𝐿 equals to ξ
m𝑣𝐿  =  𝑉𝐿 sin(𝜔𝑑  𝑡)
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We have: so𝑣𝐿 = 𝐿
𝑑𝑖𝐿

𝑑𝑡
  𝑑𝑖𝐿

𝑑𝑡
 =

𝑣𝐿

𝐿
 =

𝑉𝐿

𝐿
𝑠𝑖𝑛(𝜔𝑑  𝑡)

Integrating the expression: 𝑖𝐿 = න
𝑉𝐿

𝐿
𝑠𝑖𝑛(𝜔𝑑  𝑡)𝑑𝑡

=  −
𝑉𝐿

𝜔𝑑  𝐿
cos(𝜔𝑑  𝑡)

=
𝑉𝐿

𝝎𝒅 𝑳
sin(𝜔𝑑  𝑡 − 90°)

We define the 
inductive reactance X

L
(Ω)

𝖷𝖫  =  𝜔𝖽𝖫

𝑖𝐿  =
𝑉𝐿

𝑋𝐿
 sin(𝜔𝑑  𝑡 − 90°)

By identification with: 𝑖𝐿  = 𝐼𝐿 sin(𝜔𝑑  𝑡 − 𝜙)

𝑉𝐿 = 𝑋𝐿 𝐼𝐿𝐼𝐿 = 𝑉𝐿/𝑋𝐿 and ϕ = +90° → 𝑖𝐿  = 𝐼𝐿 sin(𝜔𝑑  𝑡 − 90°)

Inductive Load

and

I
L

is the amplitude of i
L
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𝑣𝐿  =  𝑉𝐿 sin(𝜔𝑑  𝑡)

𝑖𝐿  = 𝐼𝐿 sin(𝜔𝑑  𝑡 − 90°)

𝒗𝑳 and 𝒊𝑳 are one quarter 

of cycle out of phase → ϕ = +90°

→ 𝑖𝐿 lags 𝑣𝐿 by 90° (it peaks after)

→ ϕ = 𝑉𝐿 , 𝐼𝐿 = 90° =
𝜋

2
𝑟𝑎𝑑 in phasor 

t
1

t
1

+ T Phasors at t
1

ω
d

𝑉𝐿 = 𝑋𝐿 𝐼𝐿

Inductive Load

Representation with time traces and phasors :



THE SERIES RLC CIRCUIT

ELECTROMAGNETIC OSCILLATIONS & ALTERNATING CURRENT 39

RLC (with R <<) circuit forced at ωd

by an external supply of energy

Components in series
𝐼𝑅 = 𝐼𝐶 = 𝑖𝐿 = 𝐼 = 𝐼 sin(𝜔𝑑𝑡 – 𝜙)

Dependence of I and ϕ with ω
d

?

The system will oscillate at ω
d

even if

its natural frequency is ω.

→ Forced Oscillations

𝝃 =  𝝃𝒎 𝒔𝒊𝒏(𝝎𝒅 𝒕)
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Loop rule:  𝝃 = 𝒗𝑹 + 𝒗𝑪 + 𝒗𝑳

General expressions of ξ and i :

From the previous part, 

we know that:

- 𝑖 is in phase with 𝑣𝑅

- 𝑖 leads 𝑣𝐶 by 90°

- 𝑖 lags 𝑣𝐿 by 90°

𝜉 =  𝜉𝑚 sin(𝜔𝑑  𝑡) 𝑖 =  𝐼𝑚 sin(𝜔𝑑  𝑡 − 𝜙)

→ Representation with phasors
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Geometrical resolution:

We redraw the phasors as follows and sum the phasors of 𝑣𝐿 & 𝑣𝐶 to simplify:
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To satisfy the loop rule, the sum of the vertical

projections of the phasors v
R
, v

L
and v

C
must

always equals the projection of the phasor of ξ

→ To verify this, the vector sum of the phasors

must equals the phasor ξ

Applying the Pythagorean theorem, we have:

𝜉𝑚
2  = 𝑉𝑅

2  + 𝑉𝐿  −  𝑉𝐶  2

Geometrical resolution:

We redraw the phasors as follows and sum the phasors of 𝑣𝐿 & 𝑣𝐶 to simplify:
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𝜉𝑚
2  = 𝑉𝑅

2  + 𝑉𝐿  −  𝑉𝐶
2 can be written as 𝜉𝑚

2  = 𝐼𝑅 2  + 𝐼𝑋𝐿  −  𝐼𝑋𝐶
2 

(We still have 𝑉𝑅 = 𝐼𝑅,   𝑉𝐶 = 𝐼𝑋𝐶  and   𝑉𝐿 = 𝐼𝑋𝐿)

That leads to; 𝐼 =
𝜉𝑚

𝑅2  + 𝑋𝐿  −  𝑋𝐶  2
=

𝜉𝑚

𝑍

Detailing all the terms, we have:
𝐼 =

𝜉𝑚

𝑅2 + 𝜔𝑑 𝐿 −
1

𝜔𝑑 𝐶

2

 

Note: this expression holds for steady-state current after some time already passed

Z is the impedance of the circuit
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Now, we only need an expression for the phase constant

tan 𝜙 =
𝑉𝐿  −  𝑉𝐶

𝑉𝑅

- If XL – XC > 0, then, tan (ϕ) > 0, so, 0<ϕ<90°

System more inductive than capacitive at 𝜔𝑑

→ i rotates behind of ξ

- If XL – XC < 0, then, tan (ϕ) < 0, so, -90<ϕ<0°
System more capacitive than inductive at 𝜔𝑑

→ i rotates ahead of ξ

- If XL – XC = 0, then, tan (ϕ) = 0, so, ϕ = 0°
System in resonance at ω

d

→ Phasors rotate together

=
𝐼𝑋𝐿  − 𝐼𝑋𝐶

𝐼𝑅
 =

𝑋𝐿  −  𝑋𝐶

𝑅
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Now, we only need an expression for the phase constant

tan 𝜙 =
𝑉𝐿  −  𝑉𝐶

𝑉𝑅

- If XL – XC > 0, then, tan (ϕ) > 0, so, 0<ϕ<90°

System more inductive than capacitive at 𝜔𝑑

→ i rotates behind of ξ

- If XL – XC < 0, then, tan (ϕ) < 0, so, -90<ϕ<0°
System more capacitive than inductive at 𝜔𝑑

→ i rotates ahead of ξ

- If XL – XC = 0, then, tan (ϕ) = 0, so, ϕ = 0°
System in resonance at ω

d

→ Phasors rotate together

=
𝐼𝑋𝐿  − 𝐼𝑋𝐶

𝐼𝑅
 =

𝑋𝐿  −  𝑋𝐶

𝑅

𝑓𝑑 𝑓𝑑
𝑓𝑑

ξ (or Vsource)

or ξ or ξor ξ

ξ
ξ (or Vsource)

𝑓𝑟𝑒𝑠

ϕ ϕ ϕ
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At resonance:

Resonance occurs when

the driving frequency equals

the natural frequency
L = 100 µH, C = 100 pF

Φ > 0 Φ < 0

𝖫𝜔𝖽  =
𝟣

𝖢𝜔𝖽

𝜔𝖽
𝟤  =

𝟣

𝐿𝐶
 

𝜔𝖽  =
𝟣

𝐿𝐶
 

𝜔𝖽  =  𝜔 

𝖷𝖫  −  𝖷𝖢  =  𝟢
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L = 100 µH, C = 100 pF

Φ > 0 Φ < 0

The lower is R, the sharpest 

is the resonance

𝜔 =
𝟣

𝐿𝐶

𝐼 =
𝜉𝑚

𝑅2 + 𝜔𝑑 𝐿 −
1

𝜔𝑑 𝐶

2
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We consider an RLC circuit forced
by an external emf at ω

d

Some energy is stored in B, 
some in E, some is dissipated by 
R, some is provided by emf

In the steady-state the 
average amount of energy in 

the system is constant

Losses

S
u

p
p

ly
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Instantaneous dissipated power in the resistor

𝑃 =  𝑖2𝑅 =  𝐼2𝑅sin2(𝜔𝑑  𝑡 −  𝜙)

Average dissipated power

𝑃𝑎𝑣𝑔  =
𝐼

2

2

𝑅 =  𝐼𝑟𝑚𝑠
2 𝑅

Note: the average

value of sin²(θ) is 1/2
I
rms

is the root-mean-square value of I

𝐼𝑟𝑚𝑠  =
𝐼

2
 

For a pure ac current For pure ac emf and voltage, we also have

𝜉𝑟𝑚𝑠  =
𝜉𝑚

2
𝑉𝑟𝑚𝑠  =

𝑉

2

Note: a pure ac signal is a sinus (or cosinus) without offset (dc component)
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Therefore, we can write: 𝐼𝑟𝑚𝑠  =
𝜉𝑟𝑚𝑠

𝑍

And 𝑃𝑎𝑣𝑔 becomes, when replacing one 𝐼𝑟𝑚𝑠 by the last formula:

𝑃𝑎𝑣𝑔 =
𝜉𝑟𝑚𝑠

𝑍
𝐼𝑟𝑚𝑠𝑅 with 

𝑅

𝑍
= cos 𝜙 (demonstrated using tan 𝜙 in 𝑍)

𝑃𝑎𝑣𝑔  =  cos 𝜙 𝐼𝑟𝑚𝑠𝜉𝑟𝑚𝑠

Power factor

To maximize the energy transfer rate, ϕ must be close to 0

→ At the resonance energy transfer is maximized

𝑃𝑎𝑣𝑔  =
𝐼

2

2

𝑅 =  𝐼𝑟𝑚𝑠
2 𝑅

=
𝑅

𝑍
𝐼𝑟𝑚𝑠𝜉𝑟𝑚𝑠
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Note on the rms values:

When we measure a voltage or a current with a multimeter there is 2 modes

e.g. = V and ~ V for voltages

Usually, we directly report rms 

values for alternating currents / voltages

𝑉𝑟𝑚𝑠  =
𝑉

2
Amplitude / √2

Images: rs-online.com

The ~ V mode indicates the rms value of the ac component of the signal
→ Correspond to the the rms value for pure ac signals

The = V mode is the average voltage
→ 0 for a pure ac signal
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Considering the situation where 
we need to transmit energy 
in a power line

→ R of the line ≠ 0
𝑃𝑎𝑣𝑔 = 𝜉𝑟𝑚𝑠 𝐼𝑟𝑚𝑠 = 𝑉𝑟𝑚𝑠 𝐼𝑟𝑚𝑠

Power losses: 𝑅 𝐼𝑟𝑚𝑠²

→ Must be reduced

→ To transmit energy, for a given 𝑃𝑎𝑣𝑔

𝑽𝒓𝒎𝒔 >> and 𝑰𝒓𝒎𝒔 <<

Note: in the following slides we do not

write rms and assume that all the
values are rms of pure ac signals

→ This is what is measured

Transmission line

R

Source P
avg

Reception



ELECTROMAGNETIC OSCILLATIONS & ALTERNATING CURRENT 53

V >> and I <<

Problem: High bias are 
dangerous  in domestic 

installations → Mismatch

Need to have low voltage at the 
end of the transmission

High V transmission
Low V consumption
Keep P=VI constant

Need to transform I and V ?
Transformer

Image: wikipedia.org

My name is Optimus Prime!

TRANSFORMERS
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The ideal transformer

Primary coil Np turns

Secondary coil Ns turns

Iron magnetic core

Switch S open or closed

Resistive load R

Note: The load is simply resistive
here for simplification.

Generator Load

How does it works ?

Primary

coil

Secondary

coilIron core

TRANSFORMERS
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S open
The transformer receive an emf

𝜉 =  𝜉𝗆 𝗌𝗂𝗇 𝜔𝖽𝗍

The small current in the primary coil is

called magnetizing current i
mag

The power factor is 0 

→ no transmitted power

TRANSFORMERS

𝖼𝗈𝗌 𝜙  = 𝟢 

𝜙 = 𝟫𝟢° 

𝗂𝑚𝑎𝑔  =  𝖨𝑚𝑎𝑔 𝗌𝗂𝗇 𝜔𝖽𝗍 −  𝟫𝟢°       current for pure 
inductive load

i
mag
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S open
The transformer receive an emf

𝝃𝒕𝒖𝒓𝒏  =
𝗱𝝋𝘽

𝒅𝒕

I
mag

produces a sinusoidally varying

magnetic field

→ sinusoidally varying magnetic flux

ϕ
B

in the iron core

In each turn of the coils

ϕ
B

produces and emf

𝜉 =  𝜉𝗆 𝗌𝗂𝗇 𝜔𝖽𝗍

TRANSFORMERS

𝝋𝑩

Note: no minus sign here to take
into account the orientation of the
turns with respect to the core

The small current in the secondary coil is

called magnetizing current i
mag

i
mag

𝝃𝒕𝒖𝒓𝒏 𝝃𝒕𝒖𝒓𝒏 
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S open
The transformer receive an emf

𝝃𝒕𝒖𝒓𝒏  =
𝗱𝝋𝘽

𝒅𝒕

I
mag

produces a sinusoidally varying

magnetic field

→ sinusoidally varying magnetic flux

ϕ
B

in the iron core

In each turn of the coils

ϕ
B

produces and emf

𝜉 =  𝜉𝗆 𝗌𝗂𝗇 𝜔𝖽𝗍

TRANSFORMERS

𝝋𝑩

Note: no minus sign here to take
into account the orientation of the
turns with respect to the core

The small current in the secondary coil is

called magnetizing current i
mag

i
mag

𝝃𝒕𝒖𝒓𝒏 𝝃𝒕𝒖𝒓𝒏 
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The transformer receive an emf

𝜉𝑡𝑢𝑟𝑛  =
𝖽𝜙𝖡

𝑑𝑡

In each turn of the coils

ϕ
B

produces and emf

𝜉 =  𝜉𝗆 𝗌𝗂𝗇 𝜔𝖽𝗍

So we have:

𝑽𝒔 = 𝑽𝒑

𝑵𝒔

𝑵𝒑
 

Transformation of voltage

Ns > Np → Vs > Vp : Step-up transformer

Ns < Np → Vs < Vp : Step-down transformer

TRANSFORMERS

𝖵𝗌  = 𝖭𝗌 𝜉𝑡𝑢𝑟𝑛

𝖵𝗉  = 𝖭𝗉 𝜉𝑡𝑢𝑟𝑛

S open
𝝋𝑩

i
mag,

𝝃𝒕𝒖𝒓𝒏 𝝃𝒕𝒖𝒓𝒏 

𝝃𝒕𝒖𝒓𝒏 

Still no power is transmitted 
because S is open (no current in 
the second coil)→ now we close S
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The transformer receive an emf

𝜉 =  𝜉𝗆 𝗌𝗂𝗇 𝜔𝖽𝗍

S closed

Transformation of voltage

Current in the secondary circuit: 𝐼𝑠 =
𝑉𝑠

𝑅

TRANSFORMERS

𝑉𝑠 = 𝑉𝑝

𝑁𝑠

𝑁𝑝
 

I
s
creates its own varying magnetic flux

Opposes to ϕ
B

→ “lowering of V
p
”

But V
p

is kept at ξ by the generator → Produces a current I
p

to maintain V
p

Power factor of I
p
≠ 0 → Power is transferred

i
p i

s
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The transformer receive an emf

𝜉 =  𝜉𝗆 𝗌𝗂𝗇 𝜔𝖽𝗍

S closed

Transformation of voltage

Conservation of energy:

𝐼𝑠 𝑉𝑠  =  𝐼𝑝 𝑉𝑝

𝐼𝑠 =  𝐼𝑝

𝑁𝑝

𝑁𝑠
 

Conservation of energy and 

transformation of voltage lead to:
Transformation of current

𝑉𝑠  =  𝑉𝑝

𝑁𝑠

𝑁𝑝
 

Current in the secondary circuit: 𝐼𝑠 =
𝑉𝑠

𝑅

TRANSFORMERS
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The transformer receive an emf

𝜉 =  𝜉𝗆 𝗌𝗂𝗇 𝜔𝖽𝗍

S closed

Transformation of voltage

If V
s

< V
p

then I
s

> I
p

Transformation of current

Current in the secondary circuit: 𝐼𝑠 =
𝑉𝑠

𝑅

TRANSFORMERS

𝐼𝑠 =  𝐼𝑝

𝑁𝑝

𝑁𝑠
 

𝑉𝑠  =  𝑉𝑝

𝑁𝑠

𝑁𝑝
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The transformer receive an emf

𝜉 =  𝜉𝗆 𝗌𝗂𝗇 𝜔𝖽𝗍

S closed

Transformation of voltage

Transformation of current

Current in the secondary circuit: 𝐼𝑠 =
𝑉𝑠

𝑅

TRANSFORMERS

𝐼𝑠 =  𝐼𝑝

𝑁𝑝

𝑁𝑠
 

𝑉𝑠  =  𝑉𝑝

𝑁𝑠

𝑁𝑝
 

From these 3 equations we deduce I
p

𝖨𝗉  =
𝟣

𝖱

𝖭𝗌

𝖭𝗉

𝟤

 𝖵𝗉
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𝐼𝑝  =
1

𝑅

𝑁𝑠

𝑁𝑝
 

2

𝑉𝑝
Equivalent load for the primary circuit

𝑅𝑒𝑞  =  𝑅
𝑁𝑝

𝑁𝑠

2

 

Note on impedance matching

For efficient power transfer, the small impedance of the emf generator must

equals R
eq

→ use of step-up transformer

TRANSFORMERS
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Inductors and Capacitors respectively store energy as: 𝖴𝖤  =
𝗊𝟤

𝟤𝖢
𝖴𝖡  =

𝐿𝑖𝟤

𝟤
and

LC and RLC (R<<) circuits oscillate freely 

at their natural angular frequency
𝜔 =

𝟣

𝐿𝐶

Oscillations of RLC are damped → Energy loss rate Ri²

Forced RLC circuits by an external emf at ω
d

are at resonance for ω = ω
d

Forced oscillations of circuits by an external emf 𝜉 =  𝜉𝗆 𝗌𝗂𝗇 𝜔𝖽𝗍

Alternating current can be tuned by transformers 𝖨𝗌  =  𝖨𝗉

𝖭𝗉

𝖭𝗌
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Chapter 32 of the textbook
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