DIFFRACTION

CHAPTER 36

Picture from James Webb telescope

- Electromagnetic Oscillations & Alternating Current
- Maxwell's Equations & Magnetism of Matter
- Electromagnetic Waves
- Images
- Interference
- Diffraction

DIFFRACTION

Textbook: Chapter 36

- SINGLE-SLIT DIFFRACTION
- DIFFRACTION BY A CIRCULAR APERTURE
- DIFFRACTION BY A DOUBLE SLIT
- DIFFRACTION GRATINGS
- X-RAY DIFFRACTION

Geometrical optics:

Light = Rays → Straight lines

Beams can be forever as narrow as we want

Reality:

After small apertures or objects spreading + fringes

→ Like interference, geometrical optics cannot describe the phenomena

Diffraction

→ Explained by light as EM wave

Last chapter: We explained interference with slits of width comparable to λ

- → Source of 1 half-spherical wavelet following Huygens' Principle
- → Fringes on all the screen (in theory)

Double-slit interference Width ~ λ

Generalization to objects of **any width**→ source of **multiple wavelets Interference pattern not infinite**

Diffraction by a single slit

Ken Kay/Fundamental Photographs

How to explain this pattern?

- → Large bright center
 - + dark / bright fringes

Slit of width a screen at distance D We assume $D >> a > \lambda$

Bright center: wavelets travel

- \sim the same distance to reach P_0
- → In phase
- → **Constructive** interference

Dark fringes: Wavelets out of phase

→ **Destructive** interference

Position of the dark fringes: 1st minimum P₁

 \rightarrow Strategy = Pairing rays spaced by a/2 and finding the condition for destructive interference

We assume D >> a

- \rightarrow Rays parallels close to the slit angle θ to reach P₁
- → Difference of path

$$\frac{a}{2}\sin\theta \longrightarrow \frac{\lambda}{2}$$

condition for destructive interference

Position of the dark fringes: 1st minimum P₁

 \rightarrow Every pair of rays spaced by a/2 going to P_1 satisfy: $a \sin \theta = \lambda$

Note: If we decrease $a \rightarrow \sin \theta$ increases (λ is cst)

 $\rightarrow \theta$ increases

→ Pattern is enlarged

Totally destructive interference-Central axis Viewing screen

→ Other minimums ?

Position of the dark fringes: 2nd minimum P₂

 \rightarrow Group of 4 rays spaced by a/4 going to P₂

$$(a/4)\sin\theta = \lambda/2 \longrightarrow a\sin\theta = 2\lambda$$

Position of the dark fringes: m^{th} minimum P_m \rightarrow Group of m rays spaced by a / 2m going to P_m

$$(a/2m)\sin\theta = \lambda/2 \longrightarrow a\sin\theta = m\lambda$$

 θ satisfying: $a \sin \theta = m \lambda$ (m integer > 1)

 \rightarrow Dark fringe at angle θ

Intensity profile

General problem: finding the intensity at every angle θ to point P

- \rightarrow Slit divided into N zones of width Δx
- → Each is source of a wavelet

Need to determine E_{α} : the field at P to calculate intensity

Phase difference between 2 adjacent wavelets: $\Delta \phi = \frac{2\pi}{\lambda} (\Delta x \sin \theta)$

Intensity profile

$$\Delta \phi = \frac{2\pi}{\lambda} (\Delta x \sin \theta)$$
 between 2 adjacent wavelets

$$\theta = 0 \rightarrow \Delta \phi = 0$$
 for every wavelet

- → All wavelets are in phase
- \rightarrow Brightest fringe $E_{\theta} = N \Delta E$

Representation with phasors:

Intensity profile

$$\Delta \phi = \frac{2\pi}{\lambda} (\Delta x \sin \theta)$$
 between 2 adjacent wavelets

$$\theta \neq 0 \rightarrow \Delta \phi \neq 0$$
 for every wavelet

→ All wavelets have a phase difference

$$\rightarrow E_{\theta} \neq N\Delta E$$

Representation with phasors: spiral on themselves

as θ increases

Intensity profile

Typical intensity profile for single-slit diffraction

As θ increases $E_{\theta} \text{ has zeros}$ and local maxima $\rightarrow \text{ The same for intensity}$

→ Analytical expression ?

Intensity profile (optional demonstration)

→ Analytical expression

For a given angle θ , the ith of the N phasors has a phase difference with the 1st $\Delta \phi_i = \frac{2\pi}{\lambda} (i\Delta x \sin \theta)$

$$\Delta \phi_{\rm i} = \frac{2\pi}{\lambda} ({\rm i}\Delta x \sin\theta)$$

We define ϕ as the difference of phase between the 1^{st} (i=0) and the last phasor (i= N)

$$\phi = \Delta \phi_{\mathsf{N}} - \Delta \phi_{\mathsf{0}}$$

We report ϕ at the intersection of the projections of the 1st and the Nth phasors

Intensity profile (optional demonstration)

→ Analytical expression

 $N \rightarrow \infty$: The sum of the phasors of the wavelets is an arc of circle of radius R.

The length of the arc is always the same \rightarrow = to E_m (when θ = 0)

By construction, ϕ is the angle between the radius

We define $\alpha = \phi/2$

Intensity profile (optional demonstration)

→ Analytical expression

We have:
$$\sin \alpha = \frac{E_{\theta}/2}{R}$$

And, in radians:
$$\phi = 2\alpha = \frac{E_m}{R}$$

Combining these two expressions:

$$\sin \alpha = \frac{E_{\theta} / 2}{E_m / (2\alpha)} \longrightarrow E_{\theta} = E_m \frac{\sin \alpha}{\alpha}$$

Note: $sin_c(x) = sin(x) / x$

the sinc function

$$E_{\theta} = E_m \sin_c \alpha$$

Intensity profile (optional demonstration)

→ Analytical expression

We define the relative intensity as: $I_r = \frac{I_{\theta}}{I_{\theta=0}} = \frac{I_{\theta}}{I_m}$

Since the intensity is proportional to the squared length of the phasor:

$$I_r = \frac{E_\theta^2}{E_m^2}$$

So
$$\frac{I_{\theta}}{I_m} = \frac{E_{\theta}^2}{E_m^2} \longrightarrow I_{\theta} = I_m \frac{E_{\theta}^2}{E_m^2}$$
 with $E_{\theta} = E_m \sin_c \alpha \longrightarrow I_{\theta} = I_m \sin_c^2 \alpha$

Last step: relation between α and θ

Intensity profile (optional demonstration)

→ Analytical expression

We have:
$$\Delta \phi_i = \frac{2\pi}{i} (i\Delta x \sin \theta)$$
,

,
$$\phi = \Delta\phi_{N} - \Delta\phi_{0}$$

We have:
$$\Delta\phi_i = \frac{2\pi}{\lambda}(i\Delta x sin\theta)$$
 , $\phi = \Delta\phi_N - \Delta\phi_0$, $\alpha = \frac{\phi}{2}$ and $I_\theta = I_m \sin^2_c \alpha$

$$\Delta\phi_{i=0} = 0$$

$$\Delta \phi_{i=N} = \frac{2\pi}{\lambda} (N\Delta x \sin\theta)$$

a =width of the slit, divided in N intervals Δx , so we have: $N\Delta x = a$

$$\Delta \phi_N = \frac{2\pi}{\lambda} (a \sin \theta)$$

$$\phi = \frac{2\pi}{\lambda}(a\sin\theta)$$

$$\alpha = \frac{\pi}{\lambda}(a\sin\theta)$$

$$I_{\theta} = I_{m} \sin_{c}^{2} \left(\frac{a\pi}{\lambda} \sin \theta \right)$$

Intensity profile

→ Analytical expression

Narrower slit → More spreading Larger slit →Less spreading

$$I_{\theta} = I_{m} \sin^{2}_{c} \left(\frac{a\pi}{\lambda} \sin \theta \right)$$

Circular apertures

- → A little more analytically complex than slits
- → We will admit some results

Pattern = central disk + fringes

First minimum at: $\sin \theta = 1,22 \frac{\lambda}{d}$

Resolvability

The main difference with single slit $\sin \theta = \frac{\lambda}{d}$ is the factor 1.22, which enters because of the circular shape of the aperture (not demonstrated).

The same result is true for lenses of diameter d

First minimum at: $\sin \theta = 1,22 \frac{\lambda}{d}$

If one wants to image objects with **small angular separation diffraction = problem**

e.g.Two stars close to each other with a telescope or two near micro-objects with a microscope

Expectation (from geometrical optics)

Reality

Resolvability

Closer are the objects, the more difficult they are to resolve

→ distinguish as 2 separate objects

Diffraction patterns overlap

→ Need **objective criteria** to claim that we see two objects

Resolvability → **Rayleigh's criterion** (other criteria exist)

First minimum at:
$$sin \theta = 1,22 \frac{\lambda}{d}$$

Minimum condition to resolve 2 objects when the 1st minimum of the 1st object overlaps the maximum of the 2nd object

(Intensity profiles for single objects)

Since the angles are small, we can replace $\sin \theta_R$ with θ_R

In other words, we define the angular separation θ_R as:

$$\theta > \theta_R = 1,22 \frac{\lambda}{d}$$

The smallest angular separation between two resolved objects

Resolvability → **Rayleigh's criterion** (other criteria exist)

Notes:

θ_R depends of the instrument \rightarrow here d is for a single lens

- → if more lenses then more complex

θ_R depends of the wavelength

- \rightarrow mean λ of visible light \sim 550 nm
- \rightarrow smaller λ (e.g. UV < 400 nm) means smaller θ_{R} and better resolution

Valid for particles of smaller λ e.g. e⁻ (quantum mechanics)

→ Scanning Electron Microscopy (SEM)

In other words, we define the angular separation θ_{R} as:

$$heta > heta_R = 1,22 \frac{\lambda}{d}$$

The smallest angular separation between two resolved objects

At normal viewing distances, the dots are irresolvable and thus blend.

So far, we investigated diffraction by **single objects**:

- single slit
- single circular aperture

What would happen if **several objects** diffract light?

→ More interference!

First, diffraction by **double slits of** width not $<<\lambda$

When we studied interference by double-slits, we assumed $a << \lambda$

- $\rightarrow a <<$, so diffraction pattern >>
- → Interference on all the screen
 Bright fringes with equal intensity

Typical experimental results:

Single slit of width a:

" sin_c^2 " pattern

Double-slit of width a spaced by distance d:

" sin_c^2 " pattern multiplied by " cos^2 " pattern

→ "cos²" is the interference pattern of 2 slits

With graphs:

Diffraction pattern of 1 slit (a > λ)

Interference pattern of 2 slits (a $\sim \lambda$) spaced by d

Diffraction pattern of 2 slits $(a > \lambda)$ spaced by d

With equations:

If $a \to 0$ then $sin_c(...) \to 1$ Formula for double-slit ($a << \lambda$) interference

If $d \to 0$ then $\cos(...) \to 1$ Formula for single slit $(a > \lambda)$ diffraction

Diffraction pattern of 2 slits $(a > \lambda)$ spaced by d

Diffraction grating:

Alignment of **N** (large number) slits called rulings of width $\sim \lambda$ and spaced by $d > \lambda$ Width of the grating: w = Nd

Rulings $a \sim \lambda$ cause **interference** Spacing $d > \lambda$ causes **diffraction**

Diffraction grating:

Pattern for a monochromatic incident wave:

Very narrow maxima = lines regularly spaced

Difference of path between adjacent rays: $d \sin \theta$

Constructive interference at lines $d \sin \theta = m \lambda$ (m integer)

Lines labeled by their order with respect to the central axis (angle θ)

$$d\sin\theta = m\lambda \longrightarrow \theta = a\sin\left(m\frac{\lambda}{d}\right)$$

Experimentally:

- We can measure θ & count m
- d is a known parameter
- \rightarrow Determining unknown λ

Non-monochromatic incident light:

- Each λ produce a pattern of lines
- → Separating and determining wavelengths

Department of Physics, Imperial College/Science Photo Library/ Photo Researchers, Inc.

Composition of an unknown sample emitting light can be determined with a **grating spectroscope**

Grating spectroscope:

Example: Hydrogen lamp

- → Emits white light
- \rightarrow Decomposed into multiple λ
- → Emission lines

réseau pas du réseau = 1,6 μm faisceau incident

Notes:

- For $\theta = 0$ lines superposed
- -m = 3 not show for clarity
- 4th red line cannot be observed ($\theta > 90^{\circ}$)

Grating spectroscope:

Lines must be clearly separated to be resolved:

Bad Good I

We admit that the **half-width of a line** ($\Delta\theta_{hw}$) is:

N and d are characteristics of the grating

$$\Delta\theta_{hw} = \frac{\lambda}{Nd\cos\theta}$$

We define the **dispersion (D)** of the grating as:

$$D = \frac{\Delta \theta}{\Delta \lambda} = \frac{m}{d \cos \theta}$$

If $\Delta \lambda <<$, D must be large to measure $\Delta \theta \geq \Delta \theta_{hw}$

Grating spectroscope:

We define the **resolving power R** between two wavelength $\lambda_1 \& \lambda_2$

$$R = \frac{1/2 (\lambda_1 + \lambda_2)}{\lambda_2 - \lambda_1} = \frac{\lambda_{avg}}{\Delta \lambda}$$

Since two lines are resolved if, at least: $\Delta\theta = \Delta\theta_{hw} = \frac{\lambda}{Nd\cos\theta}$

Since:
$$D = \frac{\Delta \theta}{\Delta \lambda} = \frac{m}{d\cos \theta}$$

Since:
$$D = \frac{\Delta \theta}{\Delta \lambda} = \frac{m}{d\cos\theta}$$
 We have: $\frac{\left(\frac{\lambda}{N \, d\cos\theta}\right)}{\Delta \lambda} = \frac{m}{d\cos\theta}$ \longrightarrow $m N = \frac{\lambda}{\Delta \lambda}$

So
$$2m N = \frac{\lambda_1}{\Delta \lambda} + \frac{\lambda_2}{\Delta \lambda} \longrightarrow m N = \frac{1/2 (\lambda_1 + \lambda_2)}{\Delta \lambda} \longrightarrow R = m N$$

Grating spectroscope:

Resolving power R:

$$R = \frac{\lambda_{avg}}{\Delta \lambda} = m N$$

R >> → Narrow lines

Dispersion D:

$$D = \frac{\Delta \theta}{\Delta \lambda} = \frac{m}{d cos \theta}$$

 $D >> \rightarrow$ Spaced lines

$$R << \& D >>$$

$$R >> \& D <<$$

$$R >> \& D >>$$

Guess what I'm?

Rosalind Elsie Franklin (25 July 1920 – 16 April 1958) was a British chemist and X-ray crystallographer whose discovered the molecular structures of DNA

X-RAY: EM waves with $\lambda <<$

 $\lambda \sim 0.1 nm = 1 \text{ Å}$

Atoms in a metal target bombarded by accelerated e⁻ emits X-Rays

/!\ X-rays are high energy radiation

→ must be handled with caution

X-RAY: EM waves with $\lambda <<$

 $\lambda \sim 0.1 nm = 1 \text{ Å}$

Crystal = 3d translation of the unit cell

Inter-atomic distances in crystals and atomic radius are small enough to diffract X-rays

Crystal = 3d grating for x-rays

NaCl conventional unit cell - Face-centered cubic

Note:

Previously, we explained how a **spectroscope** with a grating decompose **unknown radiation** to **determine wavelengths Grating parameters are known**

For X-Ray diffraction by crystals **the situation is reversed**:
An **unknown crystal** diffracts radiation to **characterize the crystal** λ **is known**

We obtain information on the **geometry of the unit cell**, its **dimensions** and atomic **composition** from the diffraction pattern

X-rays **scattered** by the crystal structure → Redirected in all directions Scattered waves interfere destructively or **constructively**

Intensity maxima

As if X-Rays were **reflected** at angle θ by a family of **parallel imaginary planes**

- → Identical (same atoms at the same positions)
- \rightarrow spaced by a distance d

Example: two families of planes with different interplanar distances

Intensity maxima when the reflected waves are in phase

Note: θ with respect to the plane here not the normal

Difference of path length 2 d sinθ

Bragg's law for intensity maxima:

$$2 d sin\theta = m\lambda$$

Intensity maxima when the reflected waves are in phase

Bragg's law for intensity maxima: $2 d sin\theta = m\lambda$

$$2 d sin\theta = m\lambda$$

Example of NaCl:

Diffraction pattern indicates face-centered cubic Maxima of order m at angle θ

We have:
$$(5d)^2 = \left(\frac{a_0}{2}\right)^2 + a_0^2 \longrightarrow a_0 = d\sqrt{20}$$

If I know λ and the angle θ formed on the screen between the O^{th} and the 1^{rst} order (m=1), I can know the interatomic distance

KEY POINTS

Single-slit diffraction
$$I_{\theta} = I_{m} \sin_{c}^{2} \left(\frac{a\pi}{\lambda} \sin \theta \right)$$

Diffraction by a circular aperture

Rayleigh's criteria
$$\theta_R = 1.22 \frac{\lambda}{d}$$

Double-slit diffraction
$$I_{\theta} = I_{m} \cos^{2} \left(\frac{d\pi}{\lambda} \sin \theta \right) \sin^{2}_{c} \left(\frac{a\pi}{\lambda} \sin \theta \right)$$

Diffraction gratings
$$d \sin \theta = m\lambda$$
 $R = \frac{\lambda_{avg}}{\Delta \lambda} = m N$ $D = \frac{\Delta \theta}{\Delta \lambda} = \frac{m}{d \cos \theta}$

Diffraction of X-rays by crystals and Bragg's law $2 d \sin \theta = m\lambda$

INTERFERENCE 45

https://www.youtube.com/watch?v=NazBRcMDOOo

Diffraction interference patterns with phasor diagrams

Physics Videos by Eugene Khutoryansky

973 k abonnés

🗘 Abonné 🗸

https://youtu.be/cep6eECGtw4

The Science Asylum 🕏

Re