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- Maxwell’s Equations & Magnetism of Matter

- Electromagnetic Waves
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INTERFERENCE

Textbook: Chapter 35

- LIGHT AS A WAVE

- YOUNG’'S INTERFERENCE EXPERIMENT

- INTERFERENCE & DOUBLE-SLIT INTENSITY
- INTERFERENCE FROM THIN FILMS

- MICHELSON'’S INTERFEROMETER




Note on this chapter:
In the previous chapters, we represented light by rays and postulated:

“There is no interaction between rays” - This is false in many cases
— But geometrical optics are still useful to design optical systems

Light is an EM wave E = E, sin(kx — wt)
2 incidents wave of E field E, & E, of the same w and polarization

E, = Ey,, sin(fkx — wt + ¢;)
+ = 7
E, = E,,, sin(kx — wt + ¢,)
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LIGHT AS A WAVE

Wavefront
|||

R 71 Al 7ML
n|||,nr A r /Al A

Maxwell:
Light = E and B fields
Mutual induction — Propagation

Propagation of the
wavefront of a plane

Huygens’ Principle for propagation

"All points on a wavefront serve a point
sources of spherical secondary
wavelets. After a time t, the new
position of the wavefront will be that of a

surface tangent to these secondary Wavelet
wavelets.” 2 \
Wavefront at New position
(=0 of wavefront
at time (= Al
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LIGHT AS A WAVE

Incident wave

Refraction with Huygens’ Principle

We represent wavefront
spaced by 1 wavelength
A, & 4, in mediums 1 & 2

Speed of light:

v, & v, in mediums 1 & 2
We assume v, > v,

6,: Angle of incidence refracted wave
6,: Angle of refraction
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LIGHT AS A WAVE

Refraction with 0= 2
Huygens’ Principle — light travels frometocin At = A, /v, ~| 2 .
. 1 1
hg = L=
< )12 . Az [
— light travels fromhtoginat = Av, — /
/
We define refractive A ¢/ ng  n,

indexesasn=c/v > A_z—c/n2=n—1

In/hee: sin(8,) =ec/h he = A / hc
— hc= 1 /51n(01) ™S

A sin(6,)

In h/g\c: sin(6,) = hg /hc = Az/hc/ A, sin(6;)
— hc = 4, /sin(6,)
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LIGHT AS A WAVE

Refraction with
Huygens’ Principle

A n; M sin(6,)

a m Ay sin(6,)

\ /

n,sin(8,;) = n,sin(6,)

INTERFERENCE 9



LIGHT AS A WAVE

Note on wavelength For monochromatic light going from vacuum to a
medium of index n:

/11 _nz A

= %_zzéanz
Ay nq An 1

A
n

A wavelength in vacuum
A, ¢ wavelength in a medium of index n

. C v
Thus, frequencies are: | f = 7 and f, = .

n

f : frequency in vacuum

Change of medium fn: frequency in a medium of index n
— Change of wavelength v : speed of light in a medium of index n
A #* A,
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LIGHT AS A WAVE

Note on wavelength

A C _ v
A, = - f = 7 and fn, = i
Wavelength (nm)
TG, WiE FEIEE 700 600 500 400
, :
% c/n C
n n

Wavelength change In the visible spectrum, color of light

Frequency does not change change due to refraction ?
(Always the same than in vacuum)

Vv

—>  No because f determines color
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LIGHT AS A WAVE

~ L

E = E, sin(kx — wt)

E = E, sin — wt>

Note: here we assume that the
waves have the same amplitude

INTERFERENCE

Assumed in phase before

Not in phase after

What happens when they
reach a common point ?




LIGHT AS A WAVE

Qualitatively: we look for the ratios N, ,

n
_>—2>_ of L over the wavelength in mediums 1 and 2
—_ N L Ln, TN L L n,

= —= — an e =
nq « Y A A £ Al A
L
|<—L—>| Thus, N; — N; = z(nz - ny)

N, and N,: “the number of wavefronts in mediums 1 and 2” (not integers)

If N,— N, = 0|1] — Phase difference = 0 [2m] Electric fields will add
— constructive interference

If N,— N, = 1/2[1] — Phase difference = m/2 [2r] Electric fields will subtract
— destructive interference
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LIGHT AS A WAVE

Represented schematically as an example:

Ny = L/?\nz =

\WAVAVAVA
AVAVATITh

2,5

Vi
/

aseyd U|

NZ_N1:_2:0[1]
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LIGHT AS A WAVE

Back in air after the mediums 1 and 2:

VWV VWV
VW V%

In Phase constructive interference Out of Phase destructive interference

If N,— N, = 0|1] — Phase difference = 0 [2m] Electric fields will add
— constructive interference

If N,— N, = 1/2[1] — Phase difference = m/2 [2r] Electric fields will subtract
— destructive interference
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LIGHT AS A WAVE

Light with the same initial phase that have propagated in different
mediums will interfere when they reach a common point
— Their phase is now different

The same is true if path length is different

i AL
Plane mirror o 0123,
A
AL /2 — Constructive interference
AL 135
A 2’2’2
—_— — Destructive interference
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Note on diffraction
— Topic of the next chapter but
we need some concepts now

Consequence of Huygens’ Principle
— When a plane wave encounters
a slit, its width (a) being of the
order of magnitude of A,
(a ~ A) light spreads

Small d — Large spreading

INTERFERENCE

YOUNG'S INTERFERENCE EXPERIMENT

Incident
wave

<A

b

Diffracted

L

Practically, we cannot have a beam so
narrow that is width is comparable to A
Limitation not described by geometrical

optics




YOUNG'S INTERFERENCE EXPERIMENT

Young's experiment:

An incident plane wave is
diffracted by a first slit.

The diffracted wave is again
diffracted by two slits.

Interference pattern is imaged
on a screen

Max: Bright fringes
Min: Dark fringes

INTERFERENCE

Max: Bright fringes — Min: Dark fringes
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YOUNG'S INTERFERENCE EXPERIMENT

https://www.youtube.com/@veritasium
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YOUNG'S INTERFERENCE EXPERIMENT

An incident plane wave is
diffracted by two slits.

Interference pattern is
imaged on a screen

Max: Bright fringes
Min: Dark fringes

Courtesy Jear] Walker

INTERFERENCE

Modern double-slit experiment:

Incident
wave

Next — Prediction of the pattern

h{ax
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YOUNG'S INTERFERENCE EXPERIMENT

Incident monochromatic plane wave of

wavelength A
9 Incident

Diffraction at points S; & S, spaced by d/2 wave
from the central axis

We look the intensity at point P on the
screen at distance D and at y from the
central axis

0 is the angle from the central axis to P

From the spherical wavefronts we define
the raysr, and r,

D

| <
Different path
— Difference of phase

INTERFERENCE




YOUNG'S INTERFERENCE EXPERIMENT

Different path — Difference of phase

_ _ Incident
Geometrical representation: wave
We assume r; and r, parallel close to
S;and S, -d<<D

S9
S]

Path length difference AL
INTERFERENCE 22




YOUNG'S INTERFERENCE EXPERIMENT

Different path — Difference of phase

Geometrical representation:

We assume r; and r, parallel close to
S;and S, -d<<D

Path length difference AL
INTERFERENCE

We have: AL = dsinB

For AL = mA (m integer)
— Constructive interference
— Bright fringes

For AL = (m+ 1/2)A (m integer)
— Destructive interference
— Dark fringes
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YOUNG'S INTERFERENCE EXPERIMENT

Different path — Difference of phase

mA

Bright fringes at ¢ = asin <7>
1/2)A
Dark fringes at 6 = asin((m +d/ ) )

Classification of fringes:
Bright / dark and order of the fringe

m = 0: 1st order
m = 1: 2" order
= 2: 3 order
INTERFERENCE

We have: AL = dsinB

For AL = mA (m integer)
— Constructive interference
— Bright fringes

For AL = (m+ 1/2)A (m integer)
— Destructive interference
— Dark fringes




INTERFERENCE & DOUBLE-SLIT INTENSITY

Note on coherence

To observe interference, there must be phase
difference between waves

— This phase difference must remain
the same at a given point over time

— In a double-slit experiment the same
source must illuminate S, & S,

Light from S, and S, is coherent

INTERFERENCE
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INTERFERENCE & DOUBLE-SLIT INTENSITY

Note on coherence

— If we used 2 sources, we could not see interference because the
phase of a given source vary over time

— Light from S, and S, is incoherent and the phase difference is not

the same at a given point over time

| 52!/
.5]|

The interference pattern
will change rapidly as
the phase of the sources
change independently
— Cannot see fringes

INTERFERENCE

| 52!/
51|

| 52!/
5]|
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INTERFERENCE & DOUBLE-SLIT INTENSITY

Intensity in double-slit experiment | p
Two EM waves arrive at P with a phase difference: '
I

General expression: E = E,, sin(kx — wt + )

E, from S;: E, = E;sin(wt)

E, from S,: E, = E;sin(wt + ¢)

Same amplitude E, and ¢ contains the
phase difference between E, and E, at P

Note: the sign before wt has changed for clarity

— 1t phase shift introduced in both fields
INTERFERENCE 27




INTERFERENCE & DOUBLE-SLIT INTENSITY

E total at P:

Intensity in double-slit experiment I 1 p
Ep — El + E2 52'

Intensity at P:

1

1
[ = = —Ez = — EZ

- Need to calculate the average value of Ep?2

INTERFERENCE 28




— Ep

INTERFERENCE & DOUBLE-SLIT INTENSITY

Intensity in double-slit experiment
Ep — El + E2

E, = Eysin(wt) + Epsin(wt + ¢)

INTERFERENCE

(EO sin(wt) + E, sin(wt + ¢))2

E¢ sin?(wt) + E§ sin®(wt + ¢) + 2E¢sin(wt)sin(wt + ¢)

E¢ (sin?(wt) + sin?(wt + ¢) + 2sin(wt)sin(wt + ¢))

Avg value:

Avg value:

Avg value:




INTERFERENCE & DOUBLE-SLIT INTENSITY

Intensity in double-slit experiment

Linearization: sinasinb —(cos(a — b) — cos(a + b))
v

—

sin(wt)sin(wt + ¢)

IL/
—(cos(g/c — ot — ¢) — cos(wt + wt)+ ¢))

T|ps from a phyS|C|st

_ %(cos(—qb) — cos(2wt + ¢))

= %(cos(qb) — cosQwt + ¢))

Never be far from a trigonometric formula sheet!
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INTERFERENCE & DOUBLE-SLIT INTENSITY

Intensity in double-slit experiment

EZ = E§ (sin?(wt) + sin®(wt + ¢) + ZSin(thsin(wt + ¢))

l

Avg value: Avg value: Avg value:
1/2 1/2 ?

E; = E§ (sinz(wt) + sin“(wt + ¢) + Z//;/(cos(qb) — cos(Ruwt + ¢))>

l l l

Avg value: Avg value: Avg value: Avg value:
1/2 1/2 cos(d) 0
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INTERFERENCE & DOUBLE-SLIT INTENSITY

Intensity in double-slit experiment

BN =NEG (sinz(wt) + sin®*(wt + @) + cos(¢) — cos(Qwt + qb))

Avg value:
1/2

1 1

(Eg)avg = E? (— + = + cos(¢p) — O>

2 2
(E5) 4y = E6 (1 + cos(e)

1 + cos<2 Q

Avg value: Avg value: Avg value:
1/2 cos(d) 0
1 + cos2a
Linearization: cos? g = or 2 coszg =1 + cosb
7 |2

2
(Eg)avg = E? 2( 5

INTERFERENCE

>> - 253 cos* () A/
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INTERFERENCE & DOUBLE-SLIT INTENSITY

Intensity in double-slit experiment

¢
(Eg)avg = 2 E§ cos? <E>

Vv

Avg value:
1/2

Thus, | I = 41, cos? (%)
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INTERFERENCE & DOUBLE-SLIT INTENSITY

Intensity in double-slit experiment (optional demonstration)

Demonstration also possible with phasors

28 + (180 — ¢) = 180 —— ﬁzg

The half-length of the phasor of E, equals

%Ep = Eycos f
So the length of the phasoris 2E, cos9

2

That leads to the same result

1
I = — 2 E§ cos? <£>
ClUp 2
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INTERFERENCE & DOUBLE-SLIT INTENSITY

Intensity in double-slit experiment Max. I = 4, if COSZ(% =1
¢ — ¢ = 2mn (m integer)
We have: I = 4]0 coS? (_> > s
- Min. I=0 if cos? (5) =0
And AL = dsin® — ¢ =(CZm+1)n

® correspond to the phase difference due Max. 1 if %d sinf = mi

to propagation along different paths — AL s dsing = ma

21T 2T
— e = — 1 — . -
b = kil = 7-AL = —-dsind Min. I if %dsin9=(m+%)n
(T — dsing = (m+1/2) 4
So I = 4l cos (Id smH) (Same results than on slide previously)
INTERFERENCE 35




INTERFERENCE & DOUBLE-SLIT INTENSITY

Intensity in double-slit experiment Max. I if ¢/2 = mn
— ¢ = 2Zmm (m integer)

We have: [ = 4]0 COSZ (%)

Min. Tif ¢/2 = (m+1/2)n
—¢ = (Cm+1)n

Intensity at screen

b 4w 3m 2w T 0 T o 3m 4m  brm
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INTERFERENCE & DOUBLE-SLIT INTENSITY

Intensity in double-slit experiment

Note: Interference do not create energy but spatially redistributes it
The average intensity is still 2I, — as if waves were incoherent

IIltGIlSlty at screen

AN ANWAWA N
\/ \J NN N N\

b 4w 3m 2w (8 0
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INTERFERENCE & DOUBLE-SLIT INTENSITY

For most physicists, the double slit experiment with quantum
particules (not just light), is considered as the most beautiful
experiment ever!

ule \mag‘“g )
1, Real-time siP g\ g\nec\osw 297-300, 2012

1 2l
T Juﬁmannne erence, Nat. Nan

«Performed with a light source so faint that only one photon exists in the apparatus at any one time
G ITaylor 1909 Proceedings of the Cambridge Pinlosophical Society 15 114-115 quantum !
Performed with electrons
C Jonsson 1961 Zeitschrift fiir Physik 161 454-474,
(translated 1974 American Journal of Physics 42 4-11)
sPerformed with single electrons
A Tonomura ef al. 1989 American Journal of Physics 57 117-120
Performed with neutrons
A Zeilinger et al. 1988 Reviews of Modern Physics 60 1067-1073
«Performed with He atoms
O Carnal and ] Miynek 1991 Physical Review Laiters 66 2689-2692
Performed with C60 molecules
M Arndt et al. 1999 Nature 401 680-682
sPerformed with C70 molecules showing reduction in fringe visibility as temperature n--
and the molecules “give away” their position by emitting photons
L. Hackermuller et al 2004 Nature 427711-714
«Performed with Ia Bose-Einstein Condensates
MK Andrews et al. 1997 Science 275 637641 . ¢ |

« .. a phenomenon which s impossible,
absolutely impossible, to explain in any
classical law, and wich has in it the heart of

quantum mechanics. In reality it contains the
only mystery. »

double:
slit

R.P. Feynman

¥
Perfomed with C4sH>6F24NgOs ‘)C‘,o\v”‘giu\if( J S
(2 MX
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INTERFERENCE FROM THIN FILMS

Observation of fringes on
thin films (soap bubble, oil on Ny | Air
water, ...)
— Interference
——

r,: reflected
r,: refracted - reflected - refracted

Richard Megna/Fundamental Photographs — L — |

Phase difference between r, &r, | Note: all angles between rays and
when they reach the eye ? normal are close to zero

INTERFERENCE 39




INTERFERENCE FROM THIN FILMS

AL between a & a’' = mA

0 phase shift Reflection may also induce a

\/\/\/ phase shift

A//;\Mt n, > n, —» 0 phase shift
\/\/\/ n, < n, — A/2 phase shift
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INTERFERENCE FROM THIN FILMS

Before ;\ ~Interface
denser string <: After :> lighter string

A

Before

lighter string <: After -Dﬁ :> denser string
A

P

(&)

Figure 35-16 Phase changes when a pulse is
reflected at the interface between two

stretched strings of different linear densi- Reflection Reflection phase shift
ties. The wave speed is greater in the lighter Off lower index 0
string. (@) The incident pulse is in the Off higher index 0.5 wavelength

denser string. () The incident pulse is in
the lighter string. Only here is there a phase
change, and only in the reflected wave.
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INTERFERENCE FROM THIN FILMS

To understand interference in
thin films contributions of

- Reflection
- Path length

- Indexes

Must be taken into account to
calculate the phase difference

Note: all angles between rays and
normal are close to zero and we
assumen; =n; =n_,
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INTERFERENCE FROM THIN FILMS

Reflection:
n, > n_. — A2 phase shift for r, n ng N
— 0 phase shift for r, “

Path length & Indexes
— I, travels ~ 2L in a medium of index n,

We must consider
AL AL 2L

A, 24 "7

— If equals to (m+1/2) — r, and r, are in phase
— Bright fringes

If equals to m — r, and r, are out of phase
— Dark fringes
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INTERFERENCE FROM THIN FILMS

Notes:
- The situation is not the same if n1 and n3 are not equals and/or > n2

- If L < M10, difference of path can be neglected
— interference only due to reflection

INTERFERENCE 4.4




MICHELSON'S INTERFEROMETER

Movable I

Interferometer — instrument
that measure precisely difference
of path by interference

M is a Beam splitter
= half transparent mirror

T telescope to observe fringes

INTERFERENCE




MICHELSON'S INTERFEROMETER

Difference of path — 2d, - 2d, l\n{?;%?,l?% 1

We assume that we see a bright (dark) fringe

— If we move M, by A/2 difference of path
increases by A

— We observe the next bright (dark) fringe

— If we move M, by A/4 difference of path
increases by A/2

— We observe the next dark (bright) fringe

INTERFERENCE




MICHELSON'S INTERFEROMETER

We put a sample of thickness L and index n ~ Lovable 1

. mirror My
inarm 1

Number of wavefronts in the sample traversed
2 times (N ) and in the same region in air (N,)
before the sample is placed:

2L 2L 2L >

INTERFERENCE




MICHELSON'S INTERFEROMETER

We put a sample of thickness L and index n ~ Lovable 1

: mirror Mo
INnarm 1

2L
Nm_Na=(n_1)7

If n is known, L can be determined from the
shift of the interference pattern

If L is known, n can be determined from the
shift of the interference pattern £

INTERFERENCE




MICHELSON'S INTERFEROMETER

Discovery of gravitational waves
from colliding black holes

The 4km long arms of the LIGO experiment at
Hanford. LIGO lab: www.ligo.caltech.edu
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KEY POINTS

Huygens’ principle
Difference of phase caused by difference of path and/or indexes

Constructive and destructive interference

Double-slit experiments | = 4l, cos? (?)

Reflection phase shifts
Interference of thin films

Principle of operation of the Michelson interferometer

INTERFERENCE



READING ASSIGNMENT

Chapter 36 of the textbook

IMAGES 51
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